Bresenham may be smart but I'm pretty sure brute force vectorization is faster. I've written two variants - the first is easier to read, the second is faster (80 us vs 50 us).
Update Fixed a bug (thanks @Varlor) and added an nd variant.
import numpy as np
from timeit import timeit
def connect(ends):
d0, d1 = np.abs(np.diff(ends, axis=0))[0]
if d0 > d1:
return np.c_[np.linspace(ends[0, 0], ends[1, 0], d0+1, dtype=np.int32),
np.round(np.linspace(ends[0, 1], ends[1, 1], d0+1))
.astype(np.int32)]
else:
return np.c_[np.round(np.linspace(ends[0, 0], ends[1, 0], d1+1))
.astype(np.int32),
np.linspace(ends[0, 1], ends[1, 1], d1+1, dtype=np.int32)]
def connect2(ends):
d0, d1 = np.diff(ends, axis=0)[0]
if np.abs(d0) > np.abs(d1):
return np.c_[np.arange(ends[0, 0], ends[1,0] + np.sign(d0), np.sign(d0), dtype=np.int32),
np.arange(ends[0, 1] * np.abs(d0) + np.abs(d0)//2,
ends[0, 1] * np.abs(d0) + np.abs(d0)//2 + (np.abs(d0)+1) * d1, d1, dtype=np.int32) // np.abs(d0)]
else:
return np.c_[np.arange(ends[0, 0] * np.abs(d1) + np.abs(d1)//2,
ends[0, 0] * np.abs(d1) + np.abs(d1)//2 + (np.abs(d1)+1) * d0, d0, dtype=np.int32) // np.abs(d1),
np.arange(ends[0, 1], ends[1,1] + np.sign(d1), np.sign(d1), dtype=np.int32)]
def connect_nd(ends):
d = np.diff(ends, axis=0)[0]
j = np.argmax(np.abs(d))
D = d[j]
aD = np.abs(D)
return ends[0] + (np.outer(np.arange(aD + 1), d) + (aD>>1)) // aD
ends = np.array([[ 1520, -1140],
[ 1412, -73]])
ends_4d = np.array([[ 100, -302, 101, -49],
[ -100, -45, 112, 100]])
print(connect(ends))
print(connect_nd(ends_4d))
assert np.all(connect(ends)==connect2(ends))
assert np.all(connect(ends)==connect_nd(ends))
assert np.all(connect(ends)==connect(ends[:, ::-1])[:, ::-1])
assert np.all(connect(ends)==connect(ends[::-1])[::-1])
print(timeit('f(ends)', globals={'f': connect, 'ends': ends}, number=10000)*100, 'us')
print(timeit('f(ends)', globals={'f': connect2, 'ends': ends}, number=10000)*100, 'us')
print(timeit('f(ends)', globals={'f': connect_nd, 'ends': ends}, number=10000)*100, 'us')
Sample output:
[[ 1520 -1140]
[ 1520 -1139]
[ 1520 -1138]
...,
[ 1412 -75]
[ 1412 -74]
[ 1412 -73]]
[[ 100 -302 101 -49]
[ 99 -301 101 -48]
[ 98 -300 101 -48]
...,
[ -98 -47 112 99]
[ -99 -46 112 99]
[-100 -45 112 100]]
78.8237597000034 us
48.02509490000375 us
62.78072760001123 us