I fitted a smoothing spline to data in R with
library(splines)
Model <- smooth.spline(x, y, df =6)
I would like to take the fitted spline and evaluate it for arbitrary new data in an external code (not in R). In other words, do what the predict.smooth.spline
function does. I had a look at the Model
object:
> str(Total_work_model)
List of 15
$ x : num [1:14] 0.0127 0.0186 0.0275 0.0343 0.0455 ...
$ y : num [1:14] 3174 3049 2887 2862 2975 ...
$ w : num [1:14] 1 1 1 1 1 1 1 1 1 1 ...
$ yin : num [1:14] 3173 3075 2857 2844 2984 ...
$ data :List of 3
..$ x: num [1:14] 0.0343 0.0455 0.0576 0.0697 0.0798 ...
..$ y: num [1:14] 2844 2984 3048 2805 2490 ...
..$ w: num [1:14] 1 1 1 1 1 1 1 1 1 1 ...
$ lev : num [1:14] 0.819 0.515 0.542 0.568 0.683 ...
$ cv.crit : num 6494075
$ pen.crit: num 3260
$ crit : num 3
$ df : num 8
$ spar : num 0.353
$ lambda : num 8.26e-05
$ iparms : Named int [1:3] 3 0 10
..- attr(*, "names")= chr [1:3] "icrit" "ispar" "iter"
$ fit :List of 5
..$ knot : num [1:20] 0 0 0 0 0.056 ...
..$ nk : int 16
..$ min : num 0.0127
..$ range: num 0.104
..$ coef : num [1:16] 3174 3132 3027 2871 2842 ...
..- attr(*, "class")= chr "smooth.spline.fit"
$ call : language smooth.spline(x = Phi00, y = Total, df = 8)
- attr(*, "class")= chr "smooth.spline"
I think the Model$fit$knot
and Model$fit$coef
vectors contain the full description of the fit. Note that the knots are 20, while x
and y
have 14 elements each: I always thought a smoothing spline would have as many knots as fitting points. However, since the first three and the last three knots are identical, 20-6 = 14 which makes sense. The problem is that I don't know how to use Model$fit$knot
and Model$fit$coef
to make predictions outside R. I tried to have a look at predict.smooth.spline
, but surprisingly that's what I get
> library(splines)
> predict.smooth.spline
Error: object 'predict.smooth.spline' not found
EDIT: since apparently some users misunderstood the question, I know how to use predict
in R, to get new values of my smoothing spline. The problem is that I want to make those predictions in an external code. Thus I wanted to have a look at the code for the function predict.smooth.spline
, so that I could try to reproduce the algorithm outside R. Usually in R you can read the code of a function just by entering its name (without arguments and without parentheses) at the R prompt. But when I try to do that with predict.smooth.spline
, I get the above error.
EDIT2: thanks to the great help from @r2evans, I found the source for the predict
method of smooth.spline
. I (think I) understand most of it:
> stats:::predict.smooth.spline.fit
function (object, x, deriv = 0, ...)
{
if (missing(x))
x <- seq.int(from = object$min, to = object$min + object$range,
length.out = length(object$coef) - 4L)
xs <- (x - object$min)/object$range
extrap.left <- xs < 0
extrap.right <- xs > 1
interp <- !(extrap <- extrap.left | extrap.right)
n <- sum(interp)
y <- xs
if (any(interp))
y[interp] <- .Fortran(C_bvalus, n = as.integer(n), knot = as.double(object$knot),
coef = as.double(object$coef), nk = as.integer(object$nk),
x = as.double(xs[interp]), s = double(n), order = as.integer(deriv))$s
if (any(extrap)) {
xrange <- c(object$min, object$min + object$range)
if (deriv == 0) {
end.object <- Recall(object, xrange)$y
end.slopes <- Recall(object, xrange, 1)$y * object$range
if (any(extrap.left))
y[extrap.left] <- end.object[1L] + end.slopes[1L] *
(xs[extrap.left] - 0)
if (any(extrap.right))
y[extrap.right] <- end.object[2L] + end.slopes[2L] *
(xs[extrap.right] - 1)
}
else if (deriv == 1) {
end.slopes <- Recall(object, xrange, 1)$y * object$range
y[extrap.left] <- end.slopes[1L]
y[extrap.right] <- end.slopes[2L]
}
else y[extrap] <- 0
}
if (deriv > 0)
y <- y/(object$range^deriv)
list(x = x, y = y)
}
However, I have two difficulties:
the .Fortran()
function calls a Fortran subroutine bvalus
whose source is quite simple. However, bvalus
in turn calls bvalue
which is much more complicated, and calls interv
whose source I cannot find. Bad news: bvalue
is way too complicated for me to understand (I'm definitely not a Fortran expert). Good news: the external code which must reproduce predict.smooth.spline.fit
is also a Fortran code. If worse comes to worst, I could just ask my coworker to include the source from bvalus
and bvalue
in his code. However, even in this admittedly not so nice scenario, I would still miss the source code for interv
(I hope it doesn't call something else!!!).
I don't understand what it's being done here (note I'm only interested in the deriv == 0
case):
k
if (any(extrap)) {
xrange <- c(object$min, object$min + object$range)
if (deriv == 0) {
end.object <- Recall(object, xrange)$y
end.slopes <- Recall(object, xrange, 1)$y * object$range
if (any(extrap.left))
y[extrap.left] <- end.object[1L] + end.slopes[1L] *
(xs[extrap.left] - 0)
if (any(extrap.right))
y[extrap.right] <- end.object[2L] + end.slopes[2L] *
(xs[extrap.right] - 1)
}
Some sort of recursive code? Any help here?
See Question&Answers more detail:
os