I'm trying to fit a piecewise defined function to a data set in Python. I've searched for quite a while now, but I haven't found an answer whether it is possible or not.
To get an impression of what I am trying to do, look at the following example (which is not working for me). Here I'm trying to fit a shifted absolute value function (f(x) = |x-p|) to a dataset with p as the fit parameter.
import scipy.optimize as so
import numpy as np
def fitfunc(x,p):
if x>p:
return x-p
else:
return -(x-p)
fitfunc = np.vectorize(fitfunc) #vectorize so you can use func with array
x=np.arange(1,10)
y=fitfunc(x,6)+0.1*np.random.randn(len(x))
popt, pcov = so.curve_fit(fitfunc, x, y) #fitting routine that gives error
Is there any way of accomplishing this in Python?
A way of doing this in R is :
# Fit of a absolute value function f(x)=|x-p|
f.lr <- function(x,p) {
ifelse(x>p, x-p,-(x-p))
}
x <- seq(0,10) #
y <- f.lr(x,6) + rnorm (length(x),0,2)
plot(y ~ x)
fit.lr <- nls(y ~ f.lr(x,p), start = list(p = 0), trace = T, control = list(warnOnly = T,minFactor = 1/2048))
summary(fit.lr)
coefficients(fit.lr)
p.fit <- coefficients(fit.lr)["p"]
x_fine <- seq(0,10,length.out=1000)
lines(x_fine,f.lr(x_fine,p.fit),type='l',col='red')
lines(x,f.lr(x,6),type='l',col='blue')
After even more research I found a way of doing it. In this solution, I don't like the fact that I have to define the error function myself. Further I'm not really sure why it has to be in this lambda-style. Therefore any kind of suggestions or more sophisticated solutions are very welcome.
import scipy.optimize as so
import numpy as np
import matplotlib.pyplot as plt
def fitfunc(p,x): return x - p if x > p else p - x
def array_fitfunc(p,x):
y = np.zeros(x.shape)
for i in range(len(y)):
y[i]=fitfunc(x[i],p)
return y
errfunc = lambda p, x, y: array_fitfunc(p, x) - y # Distance to the target function
x=np.arange(1,10)
x_fine=np.arange(1,10,0.1)
y=array_fitfunc(6,x)+1*np.random.randn(len(x)) #data with noise
p1, success = so.leastsq(errfunc, -100, args=(x, y), epsfcn=1.) # -100 is the initial value for p; epsfcn sets the step width
plt.plot(x,y,'o') # fit data
plt.plot(x_fine,array_fitfunc(6,x_fine),'r-') #original function
plt.plot(x_fine,array_fitfunc(p1[0],x_fine),'b-') #fitted version
plt.show()
See Question&Answers more detail:
os