I want to generate a Gaussian distribution in Python with the x and y dimensions denoting position and the z dimension denoting the magnitude of a certain quantity.
The distribution has a maximum value of 2e6 and a standard deviation sigma=0.025.
In MATLAB I can do this with:
x1 = linspace(-1,1,30);
x2 = linspace(-1,1,30);
mu = [0,0];
Sigma = [.025,.025];
[X1,X2] = meshgrid(x1,x2);
F = mvnpdf([X1(:) X2(:)],mu,Sigma);
F = 314159.153*reshape(F,length(x2),length(x1));
surf(x1,x2,F);
In Python, what I have so far is:
x = np.linspace(-1,1,30)
y = np.linspace(-1,1,30)
mu = (np.median(x),np.median(y))
sigma = (.025,.025)
There is a Numpy function numpy.random.multivariate_normal what can supposedly do the same as MATLAB's mvnpdf, but I am struggling to undestand the documentation. Especially in obtaining the covariance matrix needed by numpy.random.multivariate_normal.
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…