The basis interpolation is implementing a beta spline, which people like to use as an interpolation function precisely because it smooths out extreme peaks. This is useful when you are modeling something you expect to vary smoothly but only have sharp, infrequently sampled data. A consequence of this is that resulting line will not connect all data points, changing the appearance of extreme values.
In your case, the sharp peaks are the interesting features, the exception to the typically 0 baseline value. When you use a spline interpolation, you are smoothing over these peaks.
Here is a fun demo to play with the different types of line interpoations:
http://bl.ocks.org/mbostock/4342190
You can drag the data around so they resemble a sharp peak like yours, even click to add new points. Then, switch to a basis interpolation and watch the peak get averaged out.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…