I have a DataFrame(df) in pyspark, by reading from a hive table:
df=spark.sql('select * from <table_name>')
+++++++++++++++++++++++++++++++++++++++++++
| Name | URL visited |
+++++++++++++++++++++++++++++++++++++++++++
| person1 | [google,msn,yahoo] |
| person2 | [fb.com,airbnb,wired.com] |
| person3 | [fb.com,google.com] |
+++++++++++++++++++++++++++++++++++++++++++
When i tried the following, got an error
df_dict = dict(zip(df['name'],df['url']))
"TypeError: zip argument #1 must support iteration."
type(df.name) is of 'pyspark.sql.column.Column'
How do i create a dictionary like the following, which can be iterated later on
{'person1':'google','msn','yahoo'}
{'person2':'fb.com','airbnb','wired.com'}
{'person3':'fb.com','google.com'}
Appreciate your thoughts and help.
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…