There are a couple of things going on here.
First, you are better off combining your variables into a data.frame:
df <- data.frame(y=rnorm(10), x1=rnorm(10), x2 = rnorm(10))
fit <- lm(y~x1+x2, data=df)
If you do this, using you model for prediction with a new dataset will be much easier.
Second, some of the statistics of the fit are accessible from the model itself, and some are accessible from summary(fit)
.
coef <- coefficients(fit) # coefficients
resid <- residuals(fit) # residuals
pred <- predict(fit) # fitted values
rsq <- summary(fit)$r.squared # R-sq for the fit
se <- summary(fit)$sigma # se of the fit
To get the statistics of the coefficients, you need to use summary:
stat.coef <- summary(fit)$coefficients
coef <- stat.coef[,1] # 1st column: coefficients (same as above)
se.coef <- stat.coef[,2] # 2nd column: se for each coef
t.coef <- stat.coef[,3] # 3rd column: t-value for each coef
p.coef <- stat.coef[,4] # 4th column: p-value for each coefficient
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…