There are many postings on slicing the level[0] of a multiindex by a range of level1. However, I cannot find a solution for my problem; that is, I need a range of the level1 index for level[0] index values
dataframe: First is A to Z, Rank is 1 to 400; I need the first 2 and last 2 for each level[0] (First), but not in the same step.
Title Score
First Rank
A 1 foo 100
2 bar 90
3 lime 80
4 lame 70
B 1 foo 400
2 lime 300
3 lame 200
4 dime 100
I am trying to get the last 2 rows for each level1 index with the below code, but it slices properly only for the first level[0] value.
[IN] df.ix[x.index.levels[1][-2]:]
[OUT]
Title Score
First Rank
A 3 lime 80
4 lame 70
B 1 foo 400
2 lime 300
3 lame 200
4 dime 100
The first 2 rows I get by swapping the indices, but I cannot make it work for the last 2 rows.
df.index = df.index.swaplevel("Rank", "First")
df= df.sortlevel() #to sort by Rank
df.ix[1:2] #Produces the first 2 ranks with 2 level[1] (First) each.
Title Score
Rank First
1 A foo 100
B foo 400
2 A bar 90
B lime 300
Of course I can swap this back to get this:
df2 = df.ix[1:2]
df2.index = ttt.index.swaplevel("First","rank") #change the order of the indices back.
df2.sortlevel()
Title Score
First Rank
A 1 foo 100
2 bar 90
B 1 foo 400
2 lime 300
Any help is appreciated to get with the same procedure:
- Last 2 rows for index1 (Rank)
- And a better way to get the first 2 rows
Edit following feedback by @ako:
Using pd.IndexSlice
truly makes it easy to slice any level index. Here a more generic solution and below my step-wise approach to get the first and last two rows. More information here: http://pandas.pydata.org/pandas-docs/stable/advanced.html#using-slicers
"""
Slicing a dataframe at the level[2] index of the
major axis (row) for specific and at the level[1] index for columns.
"""
df.loc[idx[:,:,['some label','another label']],idx[:,'yet another label']]
"""
Thanks to @ako below is my solution, including how I
get the top and last 2 rows.
"""
idx = pd.IndexSlice
# Top 2
df.loc[idx[:,[1,2],:] #[1,2] is NOT a row index, it is the rank label.
# Last 2
max = len(df.index.levels[df.index.names.index("rank")]) # unique rank labels
last2=[x for x in range(max-2,max)]
df.loc[idx[:,last2],:] #for last 2 - assuming all level[0] have the same lengths.
See Question&Answers more detail:
os