I am trying to train a word2vec model on very short phrases (5 grams). Since each sentence or example is very short, I believe the window size I can use can atmost be 2. I am trying to understand what the implications of such a small window size are on the quality of the learned model, so that I can understand whether my model has learnt something meaningful or not. I tried training a word2vec model on 5-grams but it appears the learnt model does not capture semantics etc very well.
I am using the following test to evaluate the accuracy of model:
https://code.google.com/p/word2vec/source/browse/trunk/questions-words.txt
I used gensim.Word2Vec to train a model and here is a snippet of my accuracy scores (using a window size of 2)
[{'correct': 2, 'incorrect': 304, 'section': 'capital-common-countries'},
{'correct': 2, 'incorrect': 453, 'section': 'capital-world'},
{'correct': 0, 'incorrect': 86, 'section': 'currency'},
{'correct': 2, 'incorrect': 703, 'section': 'city-in-state'},
{'correct': 123, 'incorrect': 183, 'section': 'family'},
{'correct': 21, 'incorrect': 791, 'section': 'gram1-adjective-to-adverb'},
{'correct': 8, 'incorrect': 544, 'section': 'gram2-opposite'},
{'correct': 284, 'incorrect': 976, 'section': 'gram3-comparative'},
{'correct': 67, 'incorrect': 863, 'section': 'gram4-superlative'},
{'correct': 41, 'incorrect': 951, 'section': 'gram5-present-participle'},
{'correct': 6, 'incorrect': 1089, 'section': 'gram6-nationality-adjective'},
{'correct': 171, 'incorrect': 1389, 'section': 'gram7-past-tense'},
{'correct': 56, 'incorrect': 936, 'section': 'gram8-plural'},
{'correct': 52, 'incorrect': 705, 'section': 'gram9-plural-verbs'},
{'correct': 835, 'incorrect': 9973, 'section': 'total'}]
I also tried running the demo-word-accuracy.sh script outlined here with a window size of 2 and get poor accuracy as well:
Sample output:
capital-common-countries:
ACCURACY TOP1: 19.37 % (98 / 506)
Total accuracy: 19.37 % Semantic accuracy: 19.37 % Syntactic accuracy: -nan %
capital-world:
ACCURACY TOP1: 10.26 % (149 / 1452)
Total accuracy: 12.61 % Semantic accuracy: 12.61 % Syntactic accuracy: -nan %
currency:
ACCURACY TOP1: 6.34 % (17 / 268)
Total accuracy: 11.86 % Semantic accuracy: 11.86 % Syntactic accuracy: -nan %
city-in-state:
ACCURACY TOP1: 11.78 % (185 / 1571)
Total accuracy: 11.83 % Semantic accuracy: 11.83 % Syntactic accuracy: -nan %
family:
ACCURACY TOP1: 57.19 % (175 / 306)
Total accuracy: 15.21 % Semantic accuracy: 15.21 % Syntactic accuracy: -nan %
gram1-adjective-to-adverb:
ACCURACY TOP1: 6.48 % (49 / 756)
Total accuracy: 13.85 % Semantic accuracy: 15.21 % Syntactic accuracy: 6.48 %
gram2-opposite:
ACCURACY TOP1: 17.97 % (55 / 306)
Total accuracy: 14.09 % Semantic accuracy: 15.21 % Syntactic accuracy: 9.79 %
gram3-comparative:
ACCURACY TOP1: 34.68 % (437 / 1260)
Total accuracy: 18.13 % Semantic accuracy: 15.21 % Syntactic accuracy: 23.30 %
gram4-superlative:
ACCURACY TOP1: 14.82 % (75 / 506)
Total accuracy: 17.89 % Semantic accuracy: 15.21 % Syntactic accuracy: 21.78 %
gram5-present-participle:
ACCURACY TOP1: 19.96 % (198 / 992)
Total accuracy: 18.15 % Semantic accuracy: 15.21 % Syntactic accuracy: 21.31 %
gram6-nationality-adjective:
ACCURACY TOP1: 35.81 % (491 / 1371)
Total accuracy: 20.76 % Semantic accuracy: 15.21 % Syntactic accuracy: 25.14 %
gram7-past-tense:
ACCURACY TOP1: 19.67 % (262 / 1332)
Total accuracy: 20.62 % Semantic accuracy: 15.21 % Syntactic accuracy: 24.02 %
gram8-plural:
ACCURACY TOP1: 35.38 % (351 / 992)
Total accuracy: 21.88 % Semantic accuracy: 15.21 % Syntactic accuracy: 25.52 %
gram9-plural-verbs:
ACCURACY TOP1: 20.00 % (130 / 650)
Total accuracy: 21.78 % Semantic accuracy: 15.21 % Syntactic accuracy: 25.08 %
Questions seen / total: 12268 19544 62.77 %
However the word2vec site claims its possible to obtain an accuracy of ~60% on these tasks.
Hence I would like to gain some insights into the effect of these hyperparameters like window size and how they affect quality of learnt models.
See Question&Answers more detail:
os