Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
792 views
in Technique[技术] by (71.8m points)

apache spark - Stratified sampling with pyspark

I have a Spark DataFrame that has one column that has lots of zeros and very few ones (only 0.01% of ones).

I'd like to take a random subsample but a stratified one - so that it keeps the ratio of 1s to 0s in that column.

Is it possible to do in pyspark ?

I am looking for a non-scala solution and on based on DataFrames and not RDD-based.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

The solution I suggested in Stratified sampling in Spark is pretty straightforward to convert from Scala to Python (or even to Java - What's the easiest way to stratify a Spark Dataset ?).

Nevertheless, I'll rewrite it python. Let's start first by creating a toy DataFrame :

from pyspark.sql.functions import lit
list = [(2147481832,23355149,1),(2147481832,973010692,1),(2147481832,2134870842,1),(2147481832,541023347,1),(2147481832,1682206630,1),(2147481832,1138211459,1),(2147481832,852202566,1),(2147481832,201375938,1),(2147481832,486538879,1),(2147481832,919187908,1),(214748183,919187908,1),(214748183,91187908,1)]
df = spark.createDataFrame(list, ["x1","x2","x3"])
df.show()
# +----------+----------+---+
# |        x1|        x2| x3|
# +----------+----------+---+
# |2147481832|  23355149|  1|
# |2147481832| 973010692|  1|
# |2147481832|2134870842|  1|
# |2147481832| 541023347|  1|
# |2147481832|1682206630|  1|
# |2147481832|1138211459|  1|
# |2147481832| 852202566|  1|
# |2147481832| 201375938|  1|
# |2147481832| 486538879|  1|
# |2147481832| 919187908|  1|
# | 214748183| 919187908|  1|
# | 214748183|  91187908|  1|
# +----------+----------+---+

This DataFrame has 12 elements as you can see :

df.count()
# 12

Distributed as followed :

df.groupBy("x1").count().show()
# +----------+-----+
# |        x1|count|
# +----------+-----+
# |2147481832|   10|
# | 214748183|    2|
# +----------+-----+

Now let's sample :

First we'll set the seed :

seed = 12

The find the keys to fraction on and sample :

fractions = df.select("x1").distinct().withColumn("fraction", lit(0.8)).rdd.collectAsMap()
print(fractions)                                                            
# {2147481832: 0.8, 214748183: 0.8}
sampled_df = df.stat.sampleBy("x1", fractions, seed)
sampled_df.show()
# +----------+---------+---+
# |        x1|       x2| x3|
# +----------+---------+---+
# |2147481832| 23355149|  1|
# |2147481832|973010692|  1|
# |2147481832|541023347|  1|
# |2147481832|852202566|  1|
# |2147481832|201375938|  1|
# |2147481832|486538879|  1|
# |2147481832|919187908|  1|
# | 214748183|919187908|  1|
# | 214748183| 91187908|  1|
# +----------+---------+---+

We can now check the content of our sample :

sampled_df.count()
# 9

sampled_df.groupBy("x1").count().show()
# +----------+-----+
# |        x1|count|
# +----------+-----+
# |2147481832|    7|
# | 214748183|    2|
# +----------+-----+

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...