If you have not applied any partitioner on Dataframe A, May be this will help you understanding Join And Shuffle concepts.
Without Partitioner :
A.join(B, Seq("id"))
By default, this operation will hash all the keys of both dataframes, sending elements with the same key hash across the network to the same machine, and then join together the elements with the same key on that machine. Here you have to notice that both dataframes shuffle across the network.
With HashPartitioner:
Call partitionBy() when building A Dataframe, Spark will now know that it is hash-partitioned, and calls to join() on it will take advantage of this information. In particular, when we call A.join(B, Seq("id")), Spark will shuffle only the B RDD. Since B has less data than A you don't need to apply partitioner on B
ex:
val A = sc.sequenceFile[id, info1, info2]("hdfs://...")
.partitionBy(new HashPartitioner(100)) // Create 100 partitions
.persist()
A.join(B, Seq("id"))
Reference is from Learning Spark book.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…