When creating you model, you can specify the requirements.txt as an environment variable.
For Eg.
env = {
'SAGEMAKER_REQUIREMENTS': 'requirements.txt', # path relative to `source_dir` below.
}
sagemaker_model = TensorFlowModel(model_data = 's3://mybucket/modelTarFile,
role = role,
entry_point = 'entry.py',
code_location = 's3://mybucket/runtime-code/',
source_dir = 'src',
env = env,
name = 'model_name',
sagemaker_session = sagemaker_session,
)
This would ensure that the requirements file is run after the docker container is created, before running any code on it.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…