Personally I would drop columns with NULL
values because there is no useful information there but you can replace nulls with empty arrays. First some imports:
from pyspark.sql.functions import when, col, coalesce, array
You can define an empty array of specific type as:
fill = array().cast("array<string>")
and combine it with when
clause:
topics_a = when(col("topics_A").isNull(), fill).otherwise(col("topics_A"))
or coalesce
:
topics_a = coalesce(col("topics_A"), fill)
and use it as:
df.withColumn("topics_A", topics_a)
so with example data:
df = sc.parallelize([(1, ["a", "b"]), (2, None)]).toDF(["id", "topics_A"])
df_ = df.withColumn("topics_A", topics_a)
topic_vectorizer_A.fit(df_).transform(df_)
the result will be:
+---+--------+-------------------+
| id|topics_A| topics_vec_A|
+---+--------+-------------------+
| 1| [a, b]|(2,[0,1],[1.0,1.0])|
| 2| []| (2,[],[])|
+---+--------+-------------------+
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…