I have a binary number represented as 11.1111111 (the . being analogous to a decimal point). There are 2 bits before the point, and 1024 bits after the point. It was an exercise in calculating e to a high level of precision, but now I am stuck as to how to convert it to decimal.
Just in case you guys want to know the number, here it is:
10.1011011111100001010100010110001010001010111011010010101001101010101111110111000101011000100000001001110011110100111100111100011101100010111001110001011000001111001110001011010011011010010101101010011110000100110110010000010001010001100100001100111111101111001100100100111001110111001110001001001001101100111110111110010111110100101111111000110110001101100011000011000111010111011000111101101000000110110010000000101010111011000100011000010111101011010011110111110001111011010101110101011111110101100101011000010010010000110011111101010001111101011111000001100110111011010000100001010110001101100101010101010011110111101101000110101111001110110101010101110001001101011110011111110101011111001001001101011001100001001111000011000111000011100000111001101000101101110111111000101010011010001001110110101111001111101111111010000111001000011101111100010101100010100001001101101010110111100111001101010011000010101100110010100100111101001000001110100111100101111010101111000000101010110001100000101011001100100100111110110011101011
How do I convert this to 2.718.... (there should be about 309 digits after the decimal point)
I can't simply multiply each bit by 2^x because after a while, the number 2^x will = 0, even when using a double precision float. I'm using Visual Basic, so I'm not sure there are any larger variables exist.
[Edit by Spektre]
Just have run your string with my code (based on the link in my comment) and the result is:
e(bigdecimal)=2.71828182845904523536028747135266249775724709369995957496696762772407663035354759457138217852516642742746639193200305992181741359662904357290033429526059563073813232862794349076323382988075319525101901157383418793070215408914993488416750924476146066808226480016847741185374234544243710753907774499206955170189257927265177296267786175561825444670874889747782175809270565601486538810885558129926100522647929865142359038501319247028975364903531383896590857864585070203793060262761378008328322397393650711101939331201
e (text)=2.71828182845904523536028747135266249775724709369995957496696762772407663035354759457138217852516642742746639193200305992181741359662904357290033429526059563073813232862794349076323382988075319525101901157383418793070215408914993488416750924476146066808226480016847741185374234544243710753907774499206955170189
e (reference)=2.718281828459045235360287471352662497757247093699959574966967627724076630353547594571382178525166427427466391932003059921817413596629043572900334295260595630738132328627943490763233829880753195251019011573834187930702154089149934884167509244761460668082264800168477411853742345442437107539077744992069551702761838606261331384583000752044933826560297606737113200709328709127443747047230696977209310141692836819025515108657463772111252389784425056953696770785449969967946864454905987931636889230098793127736178215424999229576351482208269895193668033182528869398496465105820939239829488793320362509443117301238197068416140397019837679320683282376464804295311802328782509819455815301756717361332069811250996181881593041690351598888519345807273866738589422879228499892086805825749279610484198444363463244968487560233624827041978623209002160990235304369941849146314093431738143640546253152096183690888707016768396424378140592714563549061303107208510383750510115747704171898610687396965521267154688957035035402123407849819334321068170121005627880235193033224745015853904730419957777093503660416997329725088687696640355570716226844716256079882651787134195124665201030592123667719432527867539855894489697096409754591856956380236370162112047742722836489613422516445078182442352948636372141740238893441247963574370263755294448337998016125492278509257782562092622648326277933386566481627725164019105900491644998289315056604725802778631864155195653244258698294695930801915298721172556347546396447910145904090586298496791287406870504895858671747985466775757320568128845920541334053922000113786300945560688166740016984205580403363795376452030402432256613527836951177883863874439662532249850654995886234281899707733276171783928034946501434558897071942586398772754710962953741521115136835062752602326484728703920764310059584116612054529703023647254929666938115137322753645098889031360205724817658511806303644281231496550704751025446501172721155519486685080036853228183152196003735625279449515828418829478761085263981395599006737648292244375287184624578036192981971399147564488262603903381441823262515097482798777996437308997038886778227138360577297882412561190717663946507063304527954661855096666185664709711344474016070462621568071748187784437143698821855967095910259686200235371858874856965220005031173439207321139080329363447972735595527734907178379342163701205005451326383544000186323991490705479778056697853358048966906295119432473099587655236812859041383241160722602998330535370876138939639177957454016137223618789365260538155841587186925538606164779834025435128
The first is converted from text to my arbnum
data-type and then converted back to text, middle is pure text to text conversion (like in the link with conversion to hex prior to that) and last is reference e
Here the hex string of your binary string:
e (hex) =2.B7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF324E7738926CFBE5F4BF8D8D8C31D763DA06C80ABB1185EB4F7C7B5757F5958490CFD47D7C19BB42158D9554F7B46BCED55C4D79FD5F24D6613C31C3839A2DDF8A9A276BCFBFA1C877C56284DAB79CD4C2B3293D20E9E5EAF02AC60ACC93ECEBh
I truncated down do decimal nibble sizes so there may be left 1,2 or 3 bits unprocessed at the end ...
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…