Something like this:
int quick_pow10(int n)
{
static int pow10[10] = {
1, 10, 100, 1000, 10000,
100000, 1000000, 10000000, 100000000, 1000000000
};
return pow10[n];
}
Obviously, can do the same thing for long long
.
This should be several times faster than any competing method. However, it is quite limited if you have lots of bases (although the number of values goes down quite dramatically with larger bases), so if there isn't a huge number of combinations, it's still doable.
As a comparison:
#include <iostream>
#include <cstdlib>
#include <cmath>
static int quick_pow10(int n)
{
static int pow10[10] = {
1, 10, 100, 1000, 10000,
100000, 1000000, 10000000, 100000000, 1000000000
};
return pow10[n];
}
static int integer_pow(int x, int n)
{
int r = 1;
while (n--)
r *= x;
return r;
}
static int opt_int_pow(int n)
{
int r = 1;
const int x = 10;
while (n)
{
if (n & 1)
{
r *= x;
n--;
}
else
{
r *= x * x;
n -= 2;
}
}
return r;
}
int main(int argc, char **argv)
{
long long sum = 0;
int n = strtol(argv[1], 0, 0);
const long outer_loops = 1000000000;
if (argv[2][0] == 'a')
{
for(long i = 0; i < outer_loops / n; i++)
{
for(int j = 1; j < n+1; j++)
{
sum += quick_pow10(n);
}
}
}
if (argv[2][0] == 'b')
{
for(long i = 0; i < outer_loops / n; i++)
{
for(int j = 1; j < n+1; j++)
{
sum += integer_pow(10,n);
}
}
}
if (argv[2][0] == 'c')
{
for(long i = 0; i < outer_loops / n; i++)
{
for(int j = 1; j < n+1; j++)
{
sum += opt_int_pow(n);
}
}
}
std::cout << "sum=" << sum << std::endl;
return 0;
}
Compiled with g++ 4.6.3, using -Wall -O2 -std=c++0x
, gives the following results:
$ g++ -Wall -O2 -std=c++0x pow.cpp
$ time ./a.out 8 a
sum=100000000000000000
real 0m0.124s
user 0m0.119s
sys 0m0.004s
$ time ./a.out 8 b
sum=100000000000000000
real 0m7.502s
user 0m7.482s
sys 0m0.003s
$ time ./a.out 8 c
sum=100000000000000000
real 0m6.098s
user 0m6.077s
sys 0m0.002s
(I did have an option for using pow
as well, but it took 1m22.56s when I first tried it, so I removed it when I decided to have optimised loop variant)
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…