Here's a loop-free version which compares unsigned integers in O(lg b) operations where b is the word size of the machine. Note the OP states no other data types than signed int
, so it seems likely the top part of this answer does not meet the OP's specifications. (Spoiler version as at the bottom.)
Note that the behavior we want to capture is when the most significant bit mismatch is 1
for a
and 0
for b
. Another way of thinking about this is any bit in a
being larger than the corresponding bit in b
means a
is greater than b
, so long as there wasn't an earlier bit in a
that was less than the corresponding bit in b
.
To that end, we compute all the bits in a
greater than the corresponding bits in b
, and likewise compute all the bits in a
less than the corresponding bits in b
. We now want to mask out all the 'greater than' bits that are below any 'less than' bits, so we take all the 'less than' bits and smear them all to the right making a mask: the most significant bit set all the way down to the least significant bit are now 1
.
Now all we have to do is remove the 'greater than' bits set by using simple bit masking logic.
The resulting value is 0 if a <= b
and nonzero if a > b
. If we want it to be 1
in the latter case we can do a similar smearing trick and just take a look at the least significant bit.
#include <stdio.h>
// Works for unsigned ints.
// Scroll down to the "actual algorithm" to see the interesting code.
// Utility function for displaying binary representation of an unsigned integer
void printBin(unsigned int x) {
for (int i = 31; i >= 0; i--) printf("%i", (x >> i) & 1);
printf("
");
}
// Utility function to print out a separator
void printSep() {
for (int i = 31; i>= 0; i--) printf("-");
printf("
");
}
int main()
{
while (1)
{
unsigned int a, b;
printf("Enter two unsigned integers separated by spaces: ");
scanf("%u %u", &a, &b);
getchar();
printBin(a);
printBin(b);
printSep();
/************ The actual algorithm starts here ************/
// These are all the bits in a that are less than their corresponding bits in b.
unsigned int ltb = ~a & b;
// These are all the bits in a that are greater than their corresponding bits in b.
unsigned int gtb = a & ~b;
ltb |= ltb >> 1;
ltb |= ltb >> 2;
ltb |= ltb >> 4;
ltb |= ltb >> 8;
ltb |= ltb >> 16;
// Nonzero if a > b
// Zero if a <= b
unsigned int isGt = gtb & ~ltb;
// If you want to make this exactly '1' when nonzero do this part:
isGt |= isGt >> 1;
isGt |= isGt >> 2;
isGt |= isGt >> 4;
isGt |= isGt >> 8;
isGt |= isGt >> 16;
isGt &= 1;
/************ The actual algorithm ends here ************/
// Print out the results.
printBin(ltb); // Debug info
printBin(gtb); // Debug info
printSep();
printBin(isGt); // The actual result
}
}
Note: This should work for signed integers as well if you flip the top bit on both of the inputs, e.g. a ^= 0x80000000
.
Spoiler
If you want an answer that meets all of the requirements (including 25 operators or less):
int isGt(int a, int b)
{
int diff = a ^ b;
diff |= diff >> 1;
diff |= diff >> 2;
diff |= diff >> 4;
diff |= diff >> 8;
diff |= diff >> 16;
diff &= ~(diff >> 1) | 0x80000000;
diff &= (a ^ 0x80000000) & (b ^ 0x7fffffff);
return !!diff;
}
I'll leave explaining why it works up to you.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…