Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
542 views
in Technique[技术] by (71.8m points)

hadoop - Would Spark unpersist the RDD itself when it realizes it won't be used anymore?

We can persist an RDD into memory and/or disk when we want to use it more than once. However, do we have to unpersist it ourselves later on, or does Spark does some kind of garbage collection and unpersist the RDD when it is no longer needed? I notice that If I call unpersist function myself, I get slower performance.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Yes, Apache Spark will unpersist the RDD when it's garbage collected.

In RDD.persist you can see:

sc.cleaner.foreach(_.registerRDDForCleanup(this))

This puts a WeakReference to the RDD in a ReferenceQueue leading to ContextCleaner.doCleanupRDD when the RDD is garbage collected. And there:

sc.unpersistRDD(rddId, blocking)

For more context see ContextCleaner in general and the commit that added it.

A few things to be aware of when relying on garbage collection for unperisting RDDs:

  • The RDDs use resources on the executors, and the garbage collection happens on the driver. The RDD will not be automatically unpersisted until there is enough memory pressure on the driver, no matter how full the disk/memory of the executors gets.
  • You cannot unpersist part of an RDD (some partitions/records). If you build one persisted RDD from another, both will have to fit entirely on the executors at the same time.

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...