One way to do evaluate an expression is with a recursive descent parser.
http://en.wikipedia.org/wiki/Recursive_descent_parser
Here's an example grammar in BNF form:
http://en.wikipedia.org/wiki/Backus-Naur_form
Expr ::= Term ('+' Term | '-' Term)*
Term ::= Factor ('*' Factor | '/' Factor)*
Factor ::= ['-'] (Number | '(' Expr ')')
Number ::= Digit+
Here * means the preceding element is repeated zero or more times, + means one or more repeats, square brackets means optional.
The grammar ensures that the elements of highest precedence are collected together first, or in this case, evaluated first.
As you visit each node in the grammar, instead of building an abstract syntax tree, you evaluate the current node and return the value.
Example code (not perfect but should give you an idea of how to map BNF to code):
def parse_expr():
term = parse_term()
while 1:
if match('+'):
term = term + parse_term()
elif match('-'):
term = term - parse_term()
else: return term
def parse_term():
factor = parse_factor()
while 1:
if match('*'):
factor = factor * parse_factor()
elif match('/'):
factor = factor / parse_factor()
else: return factor
def parse_factor():
if match('-'):
negate = -1
else: negate = 1
if peek_digit():
return negate * parse_number()
if match('('):
expr = parse_expr()
if not match(')'): error...
return negate * expr
error...
def parse_number():
num = 0
while peek_digit():
num = num * 10 + read_digit()
return num
To show how your example of 1 + 2 * 10 - 2
would evaluate:
call parse_expr stream is 1 + 2 * 10 - 2
call parse term
call parse factor
call parse number which returns 1 stream is now + 2 * 10 - 2
match '+' stream is now 2 * 10 - 2
call parse factor
call parse number which returns 2 stream is now * 10 - 2
match '*' stream is now 10 - 2
call parse number which returns 10 stream is now - 2
computes 2 * 10, return 20
compute 1 + 20 -> 21
match '-' stream is now 2
call parse factor
call parse number which returns 2 stream is empty
compute 21 - 2, return 19
return 19
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…