On this occasion optim
will not work obviously because you have equality constraints. constrOptim
will not work either for the same reason (I tried converting the equality to two inequalities i.e. greater and less than 15 but this didn't work with constrOptim
).
However, there is a package dedicated to this kind of problem and that is Rsolnp
.
You use it the following way:
#specify your function
opt_func <- function(x) {
10 - 5*x[1] + 2 * x[2] - x[3]
}
#specify the equality function. The number 15 (to which the function is equal)
#is specified as an additional argument
equal <- function(x) {
x[1] + x[2] + x[3]
}
#the optimiser - minimises by default
solnp(c(5,5,5), #starting values (random - obviously need to be positive and sum to 15)
opt_func, #function to optimise
eqfun=equal, #equality function
eqB=15, #the equality constraint
LB=c(0,0,0), #lower bound for parameters i.e. greater than zero
UB=c(100,100,100)) #upper bound for parameters (I just chose 100 randomly)
Output:
> solnp(c(5,5,5),
+ opt_func,
+ eqfun=equal,
+ eqB=15,
+ LB=c(0,0,0),
+ UB=c(100,100,100))
Iter: 1 fn: -65.0000 Pars: 14.99999993134 0.00000002235 0.00000004632
Iter: 2 fn: -65.0000 Pars: 14.999999973563 0.000000005745 0.000000020692
solnp--> Completed in 2 iterations
$pars
[1] 1.500000e+01 5.745236e-09 2.069192e-08
$convergence
[1] 0
$values
[1] -10 -65 -65
$lagrange
[,1]
[1,] -5
$hessian
[,1] [,2] [,3]
[1,] 121313076 121313076 121313076
[2,] 121313076 121313076 121313076
[3,] 121313076 121313076 121313076
$ineqx0
NULL
$nfuneval
[1] 126
$outer.iter
[1] 2
$elapsed
Time difference of 0.1770101 secs
$vscale
[1] 6.5e+01 1.0e-08 1.0e+00 1.0e+00 1.0e+00
So the resulting optimal values are:
$pars
[1] 1.500000e+01 5.745236e-09 2.069192e-08
which means that the first parameter is 15 and the rest zero and zero. This is indeed the global minimum in your function since the x2 is adding to the function and 5 * x1 has a much greater (negative) influence than x3 on the outcome. The choice of 15, 0, 0 is the solution and the global minimum to the function according to the constraints.
The function worked great!