Exception :
val people = sc.textFile("resources/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)).toDF()
value toDF is not a member of org.apache.spark.rdd.RDD[Person]
Here is TestApp.scala
file:
package main.scala
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
case class Record1(k: Int, v: String)
object RDDToDataFramesWithCaseClasses {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("Simple Spark SQL Application With RDD To DF")
// sc is an existing SparkContext.
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
// this is used to implicitly convert an RDD to a DataFrame.
import sqlContext.implicits._
// Define the schema using a case class.
// Note: Case classes in Scala 2.10 can support only up to 22 fields. To work around this limit,package main.scala
And TestApp.scala
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
case class Record1(k: Int, v: String)
object RDDToDataFramesWithCaseClasses {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("RDD To DF")
// sc is an existing SparkContext.
// you can use custom classes that implement the Product interface.
case class Person(name: String, age: Int)
// Create an RDD of Person objects and register it as a table.
val people = sc.textFile("resources/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)).toDF()
people.registerTempTable("people")
// SQL statements can be run by using the sql methods provided by sqlContext.
val teenagers = sqlContext.sql("SELECT name, age FROM people WHERE age >= 13 AND age <= 19")
// The results of SQL queries are DataFrames and support all the normal RDD operations.
// The columns of a row in the result can be accessed by field index:
teenagers.map(t => "Name: " + t(0)).collect().foreach(println)
// or by field name:
teenagers.map(t => "Name: " + t.getAs[String]("name")).collect().foreach(println)
// row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]
teenagers.map(_.getValuesMap[Any](List("name", "age"))).collect().foreach(println)
// Map("name" -> "Justin", "age" -> 19)
}
}
And SBT File
name := "SparkScalaRDBMS"
version := "1.0"
scalaVersion := "2.11.7"
libraryDependencies += "org.apache.spark" %% "spark-core" % "1.5.1"
libraryDependencies += "org.apache.spark" %% "spark-sql" % "1.5.1"
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…