I am using object detection API with tensorflow v1.12. I am having troubles getting reproducible results - each time I run my code I am getting different results. Is there any way to set random seed at training / prediction level? I tried to set seed in model_main.py, but it didn't help.
def main(unused_argv):
tf.random.set_random_seed(1234)
flags.mark_flag_as_required('model_dir')
flags.mark_flag_as_required('pipeline_config_path')
config = tf.estimator.RunConfig(model_dir=FLAGS.model_dir, tf_random_seed=1234)
My pipeline.config for reference:
model {
faster_rcnn {
num_classes: 1
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 600
max_dimension: 1024
}
}
feature_extractor {
type: "faster_rcnn_resnet101"
first_stage_features_stride: 16
}
first_stage_anchor_generator {
grid_anchor_generator {
height_stride: 16
width_stride: 16
scales: 0.25
scales: 0.5
scales: 1.0
scales: 2.0
aspect_ratios: 0.5
aspect_ratios: 1.0
aspect_ratios: 2.0
}
}
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.0099999998
}
}
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.69999999
first_stage_max_proposals: 100
first_stage_localization_loss_weight: 2.0
first_stage_objectness_loss_weight: 1.0
initial_crop_size: 14
maxpool_kernel_size: 2
maxpool_stride: 2
second_stage_box_predictor {
mask_rcnn_box_predictor {
fc_hyperparams {
op: FC
regularizer {
l2_regularizer {
weight: 0.0
}
}
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG
}
}
}
use_dropout: false
dropout_keep_probability: 1.0
}
}
second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.30000001
iou_threshold: 0.60000002
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
}
}
train_config {
batch_size: 1
data_augmentation_options {
random_horizontal_flip {
}
}
optimizer {
momentum_optimizer {
learning_rate {
manual_step_learning_rate {
initial_learning_rate: 0.00030000001
schedule {
step: 814096
learning_rate: 2.9999999e-05
}
}
}
momentum_optimizer_value: 0.89999998
}
use_moving_average: false
}
gradient_clipping_by_norm: 10.0
fine_tune_checkpoint: "/home/kombajn/tensorflow/models/research/object_detection/2020_20_11/model_to_send/model.ckpt"
from_detection_checkpoint: false
num_steps: 30000
}
train_input_reader {
label_map_path: "/home/kombajn/tensorflow/models/research/object_detection/2020_22_12_test/data/pack.pbtxt"
tf_record_input_reader {
input_path: "/home/kombajn/tensorflow/models/research/object_detection/2020_22_12_test/data/train.record"
}
}
eval_config {
num_examples: 100
use_moving_averages: false
}
eval_input_reader {
label_map_path: "/home/kombajn/tensorflow/models/research/object_detection/2020_22_12_test/data/pack.pbtxt"
shuffle: false
num_readers: 1
tf_record_input_reader {
input_path: "/home/kombajn/tensorflow/models/research/object_detection/2020_22_12_test/data/eval.record"
}
}
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…