I have a Pandas dataframe:
type(original)
pandas.core.frame.DataFrame
which includes the series object original['user']
:
type(original['user'])
pandas.core.series.Series
original['user']
points to a number of dicts:
type(original['user'].ix[0])
dict
Each dict has the same keys:
original['user'].ix[0].keys()
[u'follow_request_sent',
u'profile_use_background_image',
u'profile_text_color',
u'id',
u'verified',
u'profile_location',
# ... keys removed for brevity
]
Above is (part of) one of the dicts of user
fields in a tweet from tweeter API. I want to build a data frame from these dicts.
When I try to make a data frame directly, I get only one column for each row and this column contains the whole dict:
pd.DataFrame(original['user'][:2])
user
0 {u'follow_request_sent': False, u'profile_use_...
1 {u'follow_request_sent': False, u'profile_use_..
When I try to create a data frame using from_dict() I get the same result:
pd.DataFrame.from_dict(original['user'][:2])
user
0 {u'follow_request_sent': False, u'profile_use_...
1 {u'follow_request_sent': False, u'profile_use_..
Next I tried a list comprehension which returned an error:
item = [[k, v] for (k,v) in users]
ValueError: too many values to unpack
When I create a data frame from a single row, it nearly works:
df = pd.DataFrame.from_dict(original['user'].ix[0])
df.reset_index()
index contributors_enabled created_at default_profile default_profile_image description entities favourites_count follow_request_sent followers_count following friends_count geo_enabled id id_str is_translation_enabled is_translator lang listed_count location name notifications profile_background_color profile_background_image_url profile_background_image_url_https profile_background_tile profile_image_url profile_image_url_https profile_link_color profile_location profile_sidebar_border_color profile_sidebar_fill_color profile_text_color profile_use_background_image protected screen_name statuses_count time_zone url utc_offset verified
0 description False Mon May 26 11:58:40 +0000 2014 True False {u'urls': []} 0 False 157
It works almost like I want it to, except it sets the description
field as the default index.
Each of the dicts has 40 keys but I only need about 10 of them and I have 28734 rows in data frame.
How can I filter out the keys which I do not need?
See Question&Answers more detail:
os