There are a few solutions to accomplish this without having to modify the original functions.
To accomplish this with a small amount of boilerplate code and transparency to python, consider registering a custom converter
. Boost.Python uses registered converters when going between C++ and Python types. Some converters are implicitly created when creating bindings, such as when class_
exports a type.
The following complete example uses an iterable_converter
type that allows for the registration of conversion functions from a python type supporting the python iterable protocol. The example enable conversions for:
- Collection of built-in type:
std::vector<double>
- 2-dimensional collection of strings:
std::vector<std::vector<std::String> >
- Collection of user type:
std::list<foo>
#include <iostream>
#include <list>
#include <vector>
#include <boost/python.hpp>
#include <boost/python/stl_iterator.hpp>
/// @brief Mockup model.
class foo {};
// Test functions demonstrating capabilities.
void test1(std::vector<double> values)
{
for (auto&& value: values)
std::cout << value << std::endl;
}
void test2(std::vector<std::vector<std::string> > values)
{
for (auto&& inner: values)
for (auto&& value: inner)
std::cout << value << std::endl;
}
void test3(std::list<foo> values)
{
std::cout << values.size() << std::endl;
}
/// @brief Type that allows for registration of conversions from
/// python iterable types.
struct iterable_converter
{
/// @note Registers converter from a python interable type to the
/// provided type.
template <typename Container>
iterable_converter&
from_python()
{
boost::python::converter::registry::push_back(
&iterable_converter::convertible,
&iterable_converter::construct<Container>,
boost::python::type_id<Container>());
// Support chaining.
return *this;
}
/// @brief Check if PyObject is iterable.
static void* convertible(PyObject* object)
{
return PyObject_GetIter(object) ? object : NULL;
}
/// @brief Convert iterable PyObject to C++ container type.
///
/// Container Concept requirements:
///
/// * Container::value_type is CopyConstructable.
/// * Container can be constructed and populated with two iterators.
/// I.e. Container(begin, end)
template <typename Container>
static void construct(
PyObject* object,
boost::python::converter::rvalue_from_python_stage1_data* data)
{
namespace python = boost::python;
// Object is a borrowed reference, so create a handle indicting it is
// borrowed for proper reference counting.
python::handle<> handle(python::borrowed(object));
// Obtain a handle to the memory block that the converter has allocated
// for the C++ type.
typedef python::converter::rvalue_from_python_storage<Container>
storage_type;
void* storage = reinterpret_cast<storage_type*>(data)->storage.bytes;
typedef python::stl_input_iterator<typename Container::value_type>
iterator;
// Allocate the C++ type into the converter's memory block, and assign
// its handle to the converter's convertible variable. The C++
// container is populated by passing the begin and end iterators of
// the python object to the container's constructor.
new (storage) Container(
iterator(python::object(handle)), // begin
iterator()); // end
data->convertible = storage;
}
};
BOOST_PYTHON_MODULE(example)
{
namespace python = boost::python;
// Register interable conversions.
iterable_converter()
// Build-in type.
.from_python<std::vector<double> >()
// Each dimension needs to be convertable.
.from_python<std::vector<std::string> >()
.from_python<std::vector<std::vector<std::string> > >()
// User type.
.from_python<std::list<foo> >()
;
python::class_<foo>("Foo");
python::def("test1", &test1);
python::def("test2", &test2);
python::def("test3", &test3);
}
Interactive usage:
>>> import example
>>> example.test1([1, 2, 3])
1
2
3
>>> example.test1((4, 5, 6))
4
5
6
>>> example.test2([
... ['a', 'b', 'c'],
... ['d', 'e', 'f']
... ])
a
b
c
d
e
f
>>> example.test3([example.Foo(), example.Foo()])
2
A few comments on this approach:
- The
iterable_converter::convertible
function could be changed to only allowing python list, rather than allowing any type that supports the iterable protocol. However, the extension may become slightly unpythonic as a result.
- The conversions are registered based on C++ types. Thus, the registration only needs to be done once, as the same registered conversion will be selected on any number of exported functions that accept the C++ type as an argument.
- It does not introduce unnecessary types into the
example
extension namespace.
- Meta-programming could allow for multi-dimensional types to recursively register each dimension type. However, the example code is already complex enough, so I did not want to add an additional level of complexity.
Alternative approaches include:
- Create a custom function or template function that accepts a
boost::python::list
for each function accepting a std::vector
. This approach causes the bindings to scale based on the amount of functions being exported, rather than the amount of types needing converted.
Using the Boost.Python vector_indexing_suite
. The *_indexing_suite
classes export a type that is adapted to match some semantics of Python list or dictionaries. Thus, the python code now has to know the exact container type to provide, resulting in a less-pythonic extension. For example, if std::vector<double>
is exported as VecDouble
, then the resulting Python usage would be:
v = example.VecDouble()
v[:] = [1, 2, 3]
example.test1(v)
However, the following would not work because the exact types must match, as exporting the class only registers a conversion between VecDouble
and std::vector<double>
:
example.test1([4, 5, 6])
While this approach scales to types rather than functions, it results in a less pythonic extension and bloats the example
namespace with unnecessary types.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…