I have a 128-bit unsigned integer A and a 64-bit unsigned integer B. What's the fastest way to calculate A % B
- that is the (64-bit) remainder from dividing A by B?
I'm looking to do this in either C or assembly language, but I need to target the 32-bit x86 platform. This unfortunately means that I cannot take advantage of compiler support for 128-bit integers, nor of the x64 architecture's ability to perform the required operation in a single instruction.
Edit:
Thank you for the answers so far. However, it appears to me that the suggested algorithms would be quite slow - wouldn't the fastest way to perform a 128-bit by 64-bit division be to leverage the processor's native support for 64-bit by 32-bit division? Does anyone know if there is a way to perform the larger division in terms of a few smaller divisions?
Re: How often does B change?
Primarily I'm interested in a general solution - what calculation would you perform if A and B are likely to be different every time?
However, a second possible situation is that B does not vary as often as A - there may be as many as 200 As to divide by each B. How would your answer differ in this case?
See Question&Answers more detail:
os 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…