Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
264 views
in Technique[技术] by (71.8m points)

c++ - I want to generate the nth term of the sequence 1,3,8,22,60 ,164 in Order(1) or order of (nlogn)

This sequence satisfies a(n+2) = 2 a(n+1) + 2 a(n).

and also a(n)=[(1+sqrt(3))^(n+2)-(1-sqrt(3))^(n+2)]/(4sqrt(3)).

I am using C++ for me n can vary from 1 to 10^ 9. I need the answers modulo (10^9)+7 But speed here is very important

My code with formula1 is slow for numbers > 10^7

#include <iostream>
#define big unsigned long long int
#include<stdlib.h>
int ans[100000001]={0};

big m  =1000000007;
using namespace std;
int main()
{
    //cout << "Hello world!" << endl;
    big t,n;
    cin>>t;
    big a,b,c;
    a=1;
    b=3;
    c=8;
    ans[0]=0;
    ans[1]=1;
    ans[2]=3;
    ans[3]=8;
    for(big i=3;i<=100000000;i++)
        {
            ans[i]=(((((ans[i-2])+(ans[i-1])))%m)<<1)%m;

        }

//    while(t--)
//    {
//        int f=0;
//        cin>>n;
//        if(n==1){
//        cout<<1<<endl;f++;}
//        if(n==2){
//        cout<<3<<endl;
//        f++;
//        }
//        if(!f){
//        a=1;
//        b=3;
//        c=8;
//        for(big i=3;i<=n;i++)
//        {
//            c=(((((a)+(b
//                         )))%m)<<1)%m;
//            a=b%m ;
//            b=c%m;
//        }
//        cout<<ans[n]<<endl;
//        }
//    }
while(t--)
{
    cin>>n;
    if(n<=100000000)
    cout<<ans[n]<<endl;
    else
    cout<<rand()%m;
}
    return 0;
}

I want a faster method. How can I compute the nth term using the second formula.Is there any trick to calculate modular powers of decimals very quickly? Do you have any suggestions for faster generation of this sequence?

Please help

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

You can calculate values of sequences with a linear recurrence relation in O(log n) steps using the matrix method. In this case, the recurrence matrix is

2 2
1 0

The n-th term of the sequence is then obtained by multiplying the n-th power of that matrix with the two initial values.

The recurrence immediately translates to

|x_n    |   |2 2|   |x_(n-1)|
|x_(n-1)| = |1 0| * |x_(n-2)|

thus

|x_(n+1)|   |2 2|^n   |x_1|
|x_n    | = |1 0|   * |x_0|.

In this case the initial conditions give, x_1 = 1, x_2 = 3 lead to x_0 = 0.5, a non-integer value, hence the calculation should rather be

|x_(n+1)|   |2 2|^(n-1)   |x_2|
|x_n    | = |1 0|       * |x_1|.

To get the value modulo some number, calculate the power of the matrix modulo that number.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...