Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
4.7k views
in Technique[技术] by (71.8m points)

scala - spark.sql.AnalysisException: Text data source does not support binary data type

I have a Spark Structured Streaming job, it reads from a Kafka topic and writes it to an S3 bucket. I am running on AWS Spark 2.4.7. The basic exception is org.apache.spark.sql.AnalysisException: Text data source does not support binary data type.;

val df = spark
  .readStream 
  .format("kafka") 
  .option(broker) 
  .option("subscribe", topic) 
  .option("kafka.security.protocol", "SSL") 
  .option("kafka.ssl.keystore.location",keystore) 
  .option("kafka.ssl.keystore.password",pw) 
  .option("kafka.ssl.key.password",pw) 
  .option("startingOffsets","earliest")
  .option("failOnDataLoss","false")
  .load()
df.selectExpr("CAST(value AS STRING)")
  .as[(String)]
    
    
// Write data from a DataFrame to S3 using a topic specified in the data
val ds = df
  .writeStream 
  .format("text")  
  .option("checkpointLocation","/tmp/checkpoint") 
  .option("path", output_path) 
  .outputMode("append") 
  .start()

Complete exception:

21/01/19 14:39:23 ERROR MicroBatchExecution: Query [id = 72525f8b-8fd0-4bd6-949d-7d8b0678271c, runId = 2e88f59a-13af-4f01-9836-454ff9039fc2] terminated with error
org.apache.spark.sql.AnalysisException: Text data source does not support binary data type.;
        at org.apache.spark.sql.execution.datasources.DataSourceUtils$$anonfun$verifySchema$1.apply(DataSourceUtils.scala:83)
        at org.apache.spark.sql.execution.datasources.DataSourceUtils$$anonfun$verifySchema$1.apply(DataSourceUtils.scala:81)
        at scala.collection.Iterator$class.foreach(Iterator.scala:891)
        at scala.collection.AbstractIterator.foreach(Iterator.scala:1334)
        at scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
        at org.apache.spark.sql.types.StructType.foreach(StructType.scala:99)
        at org.apache.spark.sql.execution.datasources.DataSourceUtils$.verifySchema(DataSourceUtils.scala:81)
        at org.apache.spark.sql.execution.datasources.DataSourceUtils$.verifyWriteSchema(DataSourceUtils.scala:36)
        at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:100)
        at org.apache.spark.sql.execution.streaming.FileStreamSink.addBatch(FileStreamSink.scala:131)
        at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$5$$anonfun$apply$17.apply(MicroBatchExecution.scala:537)
        at org.apache.spark.sql.execution.SQLExecution$.org$apache$spark$sql$execution$SQLExecution$$executeQuery$1(SQLExecution.scala:83)
        at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1$$anonfun$apply$1.apply(SQLExecution.scala:94)
        at org.apache.spark.sql.execution.QueryExecutionMetrics$.withMetrics(QueryExecutionMetrics.scala:141)
        at org.apache.spark.sql.execution.SQLExecution$.org$apache$spark$sql$execution$SQLExecution$$withMetrics(SQLExecution.scala:178)
        at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:93)
        at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:200)
        at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:92)
        at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch$5.apply(MicroBatchExecution.scala:535)
        at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:351)
        at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
        at org.apache.spark.sql.execution.streaming.MicroBatchExecution.org$apache$spark$sql$execution$streaming$MicroBatchExecution$$runBatch(MicroBatchExecution.scala:534)
        at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply$mcV$sp(MicroBatchExecution.scala:198)
        at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:166)
        at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1$$anonfun$apply$mcZ$sp$1.apply(MicroBatchExecution.scala:166)
        at org.apache.spark.sql.execution.streaming.ProgressReporter$class.reportTimeTaken(ProgressReporter.scala:351)
        at org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:58)
        at org.apache.spark.sql.execution.streaming.MicroBatchExecution$$anonfun$runActivatedStream$1.apply$mcZ$sp(MicroBatchExecution.scala:166)
        at org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:56)
        at org.apache.spark.sql.execution.streaming.MicroBatchExecution.runActivatedStream(MicroBatchExecution.scala:160)
        at org.apache.spark.sql.execution.streaming.StreamExecution.org$apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:281)
        at org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:193)

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Note that the way your code is currently written, the part

df.selectExpr("CAST(value AS STRING)")
  .as[(String)]

does not really have any impact. Having said that, your Dataframe df has the original schema of a Kafka source which is

Column Type
key binary
value binary
topic string
partition int
offset long
timestamp timestamp
timestampType int
headers (optional) array

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...