Or if you play a video game, there are
tons of state variables, beginning
with the positions of all the
characters, who tend to move around
constantly. How can you possibly do
anything useful without keeping track
of changing values?
If you're interested, here's a series of articles which describe game programming with Erlang.
You probably won't like this answer, but you won't get functional program until you use it. I can post code samples and say "Here, don't you see" -- but if you don't understand the syntax and underlying principles, then your eyes just glaze over. From your point of view, it looks as if I'm doing the same thing as an imperative language, but just setting up all kinds of boundaries to purposefully make programming more difficult. My point of view, you're just experiencing the Blub paradox.
I was skeptical at first, but I jumped on the functional programming train a few years ago and fell in love with it. The trick with functional programming is being able to recognize patterns, particular variable assignments, and move the imperative state to the stack. A for-loop, for example, becomes recursion:
// Imperative
let printTo x =
for a in 1 .. x do
printfn "%i" a
// Recursive
let printTo x =
let rec loop a = if a <= x then printfn "%i" a; loop (a + 1)
loop 1
Its not very pretty, but we got the same effect with no mutation. Of course, wherever possible, we like avoid looping altogether and just abstract it away:
// Preferred
let printTo x = seq { 1 .. x } |> Seq.iter (fun a -> printfn "%i" a)
The Seq.iter method will enumerate through the collection and invoke the anonymous function for each item. Very handy :)
I know, printing numbers isn't exactly impressive. However, we can use the same approach with games: hold all state in the stack and create a new object with our changes in the recursive call. In this way, each frame is a stateless snapshot of the game, where each frame simply creates a brand new object with the desired changes of whatever stateless objects needs updating. The pseudocode for this might be:
// imperative version
pacman = new pacman(0, 0)
while true
if key = UP then pacman.y++
elif key = DOWN then pacman.y--
elif key = LEFT then pacman.x--
elif key = UP then pacman.x++
render(pacman)
// functional version
let rec loop pacman =
render(pacman)
let x, y = switch(key)
case LEFT: pacman.x - 1, pacman.y
case RIGHT: pacman.x + 1, pacman.y
case UP: pacman.x, pacman.y - 1
case DOWN: pacman.x, pacman.y + 1
loop(new pacman(x, y))
The imperative and functional versions are identical, but the functional version clearly uses no mutable state. The functional code keeps all state is held on the stack -- the nice thing about this approach is that, if something goes wrong, debugging is easy, all you need is a stack trace.
This scales up to any number of objects in the game, because all objects (or collections of related objects) can be rendered in their own thread.
Just about every user application I
can think of involves state as a core
concept.
In functional languages, rather than mutating the state of objects, we simply return a new object with the changes we want. Its more efficient than it sounds. Data structures, for example, are very easy to represent as immutable data structures. Stacks, for example, are notoriously easy to implement:
using System;
namespace ConsoleApplication1
{
static class Stack
{
public static Stack<T> Cons<T>(T hd, Stack<T> tl) { return new Stack<T>(hd, tl); }
public static Stack<T> Append<T>(Stack<T> x, Stack<T> y)
{
return x == null ? y : Cons(x.Head, Append(x.Tail, y));
}
public static void Iter<T>(Stack<T> x, Action<T> f) { if (x != null) { f(x.Head); Iter(x.Tail, f); } }
}
class Stack<T>
{
public readonly T Head;
public readonly Stack<T> Tail;
public Stack(T hd, Stack<T> tl)
{
this.Head = hd;
this.Tail = tl;
}
}
class Program
{
static void Main(string[] args)
{
Stack<int> x = Stack.Cons(1, Stack.Cons(2, Stack.Cons(3, Stack.Cons(4, null))));
Stack<int> y = Stack.Cons(5, Stack.Cons(6, Stack.Cons(7, Stack.Cons(8, null))));
Stack<int> z = Stack.Append(x, y);
Stack.Iter(z, a => Console.WriteLine(a));
Console.ReadKey(true);
}
}
}
The code above constructs two immutable lists, appends them together to make a new list, and appends the results. No mutable state is used anywhere in the application. It looks a little bulky, but that's only because C# is a verbose language. Here's the equivalent program in F#:
type 'a stack =
| Cons of 'a * 'a stack
| Nil
let rec append x y =
match x with
| Cons(hd, tl) -> Cons(hd, append tl y)
| Nil -> y
let rec iter f = function
| Cons(hd, tl) -> f(hd); iter f tl
| Nil -> ()
let x = Cons(1, Cons(2, Cons(3, Cons(4, Nil))))
let y = Cons(5, Cons(6, Cons(7, Cons(8, Nil))))
let z = append x y
iter (fun a -> printfn "%i" a) z
No mutable necessary to create and manipulate lists. Nearly all data structures can be easily converted into their functional equivalents. I wrote a page here which provides immutable implementations of stacks, queues, leftist heaps, red-black trees, lazy lists. Not a single snippet of code contains any mutable state. To "mutate" a tree, I create a brand new one with new node I want -- this is very efficient because I don't need to make a copy of every node in the tree, I can reuse the old ones in my new tree.
Using a more significant example, I also wrote this SQL parser which is totally stateless (or at least my code is stateless, I don't know whether the underlying lexing library is stateless).
Stateless programming is just as expressive and powerful as stateful programming, it just requires a little practice to train yourself to start thinking statelessly. Of course, "stateless programming when possible, stateful programming where necessary" seems to be the motto of most impure functional languages. There's no harm in falling back on mutables when the functional approach just isn't as clean or efficient.