Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
641 views
in Technique[技术] by (71.8m points)

matlab - Fast Algorithms for Finding Pairwise Euclidean Distance (Distance Matrix)

I know matlab has a built in pdist function that will calculate pairwise distances. However, my matrix is so large that its 60000 by 300 and matlab runs out of memory.

This question is a follow up on Matlab euclidean pairwise square distance function.

Is there any workaround for this computational inefficiency. I tried manually coding the pairwise distance calculations and it usually takes a full day to run (sometimes 6 to 7 hours).

Any help is greatly appreciated!

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

Well, I couldn't resist playing around. I created a Matlab mex C file called pdistc that implements pairwise Euclidean distance for single and double precision. On my machine using Matlab R2012b and R2015a it's 20–25% faster than pdist(and the underlying pdistmex helper function) for large inputs (e.g., 60,000-by-300).

As has been pointed out, this problem is fundamentally bounded by memory and you're asking for a lot of it. My mex C code uses minimal memory beyond that needed for the output. In comparing its memory usage to that of pdist, it looks like the two are virtually the same. In other words, pdist is not using lots of extra memory. Your memory problem is likely in the memory used up before calling pdist (can you use clear to remove any large arrays?) or simply because you're trying to solve a big computational problem on tiny hardware.

So, my pdistc function likely won't be able to save you memory overall, but you may be able to use another feature I built in. You can calculate chunks of your overall pairwise distance vector. Something like this:

m = 6e3;
n = 3e2;
X = rand(m,n);
sz = m*(m-1)/2;

for i = 1:m:sz-m
    D = pdistc(X', i, i+m); % mex C function, X is transposed relative to pdist
    ...                     % Process chunk of pairwise distances
end

This is considerably slower (10 times or so) and this part of my C code is not optimized well, but it will allow much less memory use – assuming that you don't need the entire array at one time. Note that you could do the same thing much more efficiently with pdist (or pdistc) by creating a loop where you passed in subsets of X directly, rather than all of it.

If you have a 64-bit Intel Mac, you won't need to compile as I've included the .mexmaci64 binary, but otherwise you'll need to figure out how to compile the code for your machine. I can't help you with that. It's possible that you may not be able to get it to compile or that there will be compatibility issues that you'll need to solve by editing the code yourself. It's also possible that there are bugs and the code will crash Matlab. Also, note that you may get slightly different outputs relative to pdist with differences between the two in the range of machine epsilon (eps). pdist may or may not do fancy things to avoid overflows for large inputs and other numeric issues, but be aware that my code does not.

Additionally, I created a simple pure Matlab implementation. It is massively slower than the mex code, but still faster than a na?ve implementation or the code found in pdist.

All of the files can be found here. The ZIP archive includes all of the files. It's BSD licensed. Feel free to optimize (I tried BLAS calls and OpenMP in the C code to no avail – maybe some pointer magic or GPU/OpenCL could further speed it up). I hope that it can be helpful to you or someone else.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...