Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
1.2k views
in Technique[技术] by (71.8m points)

math - why does this simple shuffle algorithm produce biased results? what is a simple reason?

it seems that this simple shuffle algorithm will produce biased results:

# suppose $arr is filled with 1 to 52

for ($i < 0; $i < 52; $i++) { 
  $j = rand(0, 51);

  # swap the items

  $tmp = $arr[j];
  $arr[j] = $arr[i];
  $arr[i] = $tmp;
}

you can try it... instead of using 52, use 3 (suppose only 3 cards are used), and run it 10,000 times and tally up the results, you will see that the results are skewed towards certain patterns...

the question is... what is a simple explanation that it will happen?

the correct solution is to use something like

for ($i < 0; $i < 51; $i++) {  # last card need not swap 
  $j = rand($i, 51);        # don't touch the cards that already "settled"

  # swap the items

  $tmp = $arr[j];
  $arr[j] = $arr[i];
  $arr[i] = $tmp;
}

but the question is... why the first method, seemingly also totally random, will make the results biased?

Update 1: thanks for folks here pointing out that it needs to be rand($i, 51) for it to shuffle correctly.

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

See this:
The Danger of Na?veté (Coding Horror)

Let's look at your three card deck as an example. Using a 3 card deck, there are only 6 possible orders for the deck after a shuffle: 123, 132, 213, 231, 312, 321.

With your 1st algorithm there are 27 possible paths (outcomes) for the code, depending on the results of the rand() function at different points. Each of these outcomes are equally likely (unbiased). Each of these outcomes will map to the same single result from the list of 6 possible "real" shuffle results above. We now have 27 items and 6 buckets to put them in. Since 27 is not evenly divisible by 6, some of those 6 combinations must be over-represented.

With the 2nd algorithm there are 6 possible outcomes that map exactly to the 6 possible "real" shuffle results, and they should all be represented equally over time.

This is important because the buckets that are over-represented in the first algorithm are not random. The buckets selected for the bias are repeatable and predictable. So if you're building an online poker game and use the 1st algorithm a hacker could figure out you used the naive sort and from that work out that certain deck arrangements are much more likely to occur than others. Then they can place bets accordingly. They'll lose some, but they'll win much more than they lose and quickly put you out of business.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...