df.iloc[i]
returns the ith
row of df
. i
does not refer to the index label, i
is a 0-based index.
In contrast, the attribute index
returns actual index labels, not numeric row-indices:
df.index[df['BoolCol'] == True].tolist()
or equivalently,
df.index[df['BoolCol']].tolist()
You can see the difference quite clearly by playing with a DataFrame with
a non-default index that does not equal to the row's numerical position:
df = pd.DataFrame({'BoolCol': [True, False, False, True, True]},
index=[10,20,30,40,50])
In [53]: df
Out[53]:
BoolCol
10 True
20 False
30 False
40 True
50 True
[5 rows x 1 columns]
In [54]: df.index[df['BoolCol']].tolist()
Out[54]: [10, 40, 50]
If you want to use the index,
In [56]: idx = df.index[df['BoolCol']]
In [57]: idx
Out[57]: Int64Index([10, 40, 50], dtype='int64')
then you can select the rows using loc
instead of iloc
:
In [58]: df.loc[idx]
Out[58]:
BoolCol
10 True
40 True
50 True
[3 rows x 1 columns]
Note that loc
can also accept boolean arrays:
In [55]: df.loc[df['BoolCol']]
Out[55]:
BoolCol
10 True
40 True
50 True
[3 rows x 1 columns]
If you have a boolean array, mask
, and need ordinal index values, you can compute them using np.flatnonzero
:
In [110]: np.flatnonzero(df['BoolCol'])
Out[112]: array([0, 3, 4])
Use df.iloc
to select rows by ordinal index:
In [113]: df.iloc[np.flatnonzero(df['BoolCol'])]
Out[113]:
BoolCol
10 True
40 True
50 True