Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
1.8k views
in Technique[技术] by (71.8m points)

tensorflow - How to fix- Consider casting elements to a supported type in python

I'm trying to create word embeddings from an input text which has the full corpus of texts. I applied standard techniques and using the latest version of tensor flow. However I'm getting an error as following:

TypeError: Failed to convert object of type <class 'tensorflow.python.framework.sparse_tensor.SparseTensor'> to Tensor. Contents: SparseTensor(indices=Tensor("DeserializeSparse_1:0", shape=(None, 2), dtype=int64), values=Tensor("DeserializeSparse_1:1", shape=(None,), dtype=float32), dense_shape=Tensor("stack_1:0", shape=(2,), dtype=int64)). Consider casting elements to a supported type.

the code snippet is below

n_words = len(unique_word_dict)

# Getting all the unique words 
words = list(unique_word_dict.keys())

# Creating the X and Y matrices using one hot encoding
X = []
Y = []

for i, word_list in tqdm(enumerate(word_lists)):
    # Getting the indices
    main_word_index = unique_word_dict.get(word_list[0])
    context_word_index = unique_word_dict.get(word_list[1])

    # Creating the placeholders   
    X_row = np.zeros(n_words)
    Y_row = np.zeros(n_words)

    # One hot encoding the main word
    X_row[main_word_index] = 1

    # One hot encoding the Y matrix words 
    Y_row[context_word_index] = 1

    # Appending to the main matrices
    X.append(X_row)
    Y.append(Y_row)

# Converting the matrices into a sparse format because the vast majority of the data are 0s
X = sparse.csr_matrix(X)
Y = sparse.csr_matrix(Y)

# Defining the size of the embedding
embed_size = 2

# Defining the neural network
inp = Input(shape=(X.shape[1],))
x = Dense(units=embed_size, activation='linear')(inp)
x = Dense(units=Y.shape[1], activation='softmax')(x)
model = Model(inputs=inp, outputs=x)
model.compile(loss = 'categorical_crossentropy', optimizer = 'adam')

# Optimizing the network weights
model.fit(
    x=X, 
    y=Y, 
    batch_size=256,
    epochs=1000
    )
question from:https://stackoverflow.com/questions/65864681/how-to-fix-consider-casting-elements-to-a-supported-type-in-python

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)
Waitting for answers

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...