I am currently working on the implementation of this paper describing Map Reduce Algorithm to fing connected component : https://www.cse.unr.edu/~hkardes/pdfs/ccf.pdf
As a beginner in Big Data world , I started the implementation of CCF-Iterate (w. secondary sorting) algorithm with a small graph : 6 edges and 8 nodes. I'm running this code with the free version of Databricks.
It takes 1 minute to give a result. That seems too long for a such small example . How can I reduce this time ? What kind of optimization is possible? Any advice would be really apreciated.
The idea is to test this algo for large graphs
PySpark code:
graph = sc.parallelize([ (2,3),(1,2), (2,4), (3,5), (6,7),(7,8)])
counter_new_pair = sc.accumulator(1)
while (counter_new_pair.value > 0):
counter_new_pair = sc.accumulator(0)
#CCF Iterate Sorting
mapping_1 = graph.map(lambda x : (x[0], x[1]))
mapping_2 = graph.map(lambda x : (x[1], x[0]))
fusion = mapping_1.union(mapping_2)
fusion = fusion.groupByKey().map(lambda x : (x[0], list(x[1])))
fusion = fusion.map(lambda x : (x[0], sorted(x[1])))
values = fusion.filter(lambda x : x[1][0] < x[0])
key_min_value = values.map(lambda x : (x[0], x[1][0]))
values = values.map(lambda x : (x[1][0], x[1][1:]))
values = values.filter(lambda x : len(x[1]) != 0)
values = values.flatMap(lambda x : [(val, x[0]) for val in x[1]])
values.foreach(lambda x: counter_new_pair.add(1))
joined = values.union(key_min_value)
# CCF Dedup
mapping = joined.map(lambda x : ((x[0], x[1]), None))
graph = mapping.groupByKey().map(lambda x : (x[0][0], x[0][1]))
Thanks
question from:
https://stackoverflow.com/questions/65921915/improve-pyspark-implementation-for-finding-connected-components-in-a-graph 与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…