I mostly did the same thing you did for thresholding, but I used bitwise_and instead of bitwise_or (bitwise_or is the same as cv2.max). The lines are a little messy, but hopefully good enough for you to use. You might be able to clean them up more if you take the hue channel into account to exclude the red (I avoided it since white is technically all hues).
It might even be worth it to try and filter across multiple color spaces and combine the masks.
import cv2
import numpy as np
# find path and return its contour
def findPath(hsv):
# threshold on s an v channel
h,s,v = cv2.split(hsv);
mask1 = cv2.inRange(s, 0, 45);
mask2 = cv2.inRange(v, 115, 255);
mask3 = cv2.bitwise_and(mask1, mask2, mask = None);
# close
kernel = np.ones((5,5),np.uint8)
mask3 = cv2.dilate(mask3,kernel,iterations = 1);
mask3 = cv2.erode(mask3,kernel, iterations = 1);
# open
mask3 = cv2.erode(mask3,kernel,iterations = 1);
mask3 = cv2.dilate(mask3,kernel, iterations = 1);
# find contours
_, contours, _ = cv2.findContours(mask3, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE);
# find biggest contour
biggest = None;
biggest_size = -1;
for contour in contours:
area = cv2.contourArea(contour);
if area > biggest_size:
biggest = contour;
biggest_size = area;
return biggest;
# skeletonize the mask
def skeleton(mask):
# get structure
img = mask.copy();
size = np.size(img);
skel = np.zeros_like(mask);
elem = cv2.getStructuringElement(cv2.MORPH_CROSS,(3,3));
while True:
# skeleton iteration
eroded = cv2.erode(img,elem);
temp = cv2.dilate(eroded,elem);
temp = cv2.subtract(img,temp);
skel = cv2.bitwise_or(skel,temp);
# check for end condition
img = eroded.copy() ;
zeros = size - cv2.countNonZero(img);
if zeros == size:
break;
# connect small gaps
kernel = np.ones((2,2), np.uint8);
skel = cv2.dilate(skel, kernel, iterations = 1);
# filter out little lines
_, contours, _ = cv2.findContours(skel, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE);
# filter contours by size
big_cntrs = [];
for contour in contours:
perimeter = cv2.arcLength(contour, True);
if perimeter > 50:
big_cntrs.append(contour);
thin_lines = np.zeros_like(skel);
thin_lines = cv2.drawContours(thin_lines, big_cntrs, -1, 255, -1);
skel = thin_lines;
# dilate and close to connect lines
kernel = np.ones((3,3), np.uint8)
skel = cv2.dilate(skel, kernel, iterations = 5);
skel = cv2.erode(skel, kernel, iterations = 4);
# show
return skel;
# load image
imgs = [];
l1 = cv2.imread("line1.png");
l2 = cv2.imread("line2.png");
imgs.append(l1);
imgs.append(l2);
# convert
hsvs = [];
for img in imgs:
hsvs.append(cv2.cvtColor(img, cv2.COLOR_BGR2HSV));
# draw contours
masks = [];
for a in range(len(imgs)):
# get contour
contour = findPath(hsvs[a]);
# create mask
mask = np.zeros_like(hsvs[a][:,:,0]);
cv2.drawContours(mask, [contour], -1, (255), -1);
mask = cv2.medianBlur(mask, 5);
masks.append(mask);
# skeleton
skelly_masks = [];
for mask in masks:
skelly = skeleton(mask.copy());
skelly_masks.append(skelly);
# draw on original
for a in range(len(imgs)):
imgs[a][np.where(masks[a] == 255)] = (155,0,0); # 155 to avoid blinding people
imgs[a][np.where(skelly_masks[a] == 255)] = (0,0,155);
cv2.imshow(str(a), imgs[a]);
cv2.imwrite("img" + str(a) + ".png", imgs[a]);
cv2.waitKey(0);