Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
4.0k views
in Technique[技术] by (71.8m points)

mysql - MariaDB - why are the primary keys not being used for joins on a specific table?

I'm trying to understand why these two queries are treated differently with regards to use of the primary keys in joins.

This query with a join on icd_codes (the SELECT query, without the EXPLAIN, of course) completes in 56 ms:

EXPLAIN
SELECT var.Var_ID,
       var.Gene,
       var.HGVSc,
       pVCF_145K.PT_ID,
       pVCF_145K.AD_ALT,
       pVCF_145K.AD_REF,
       icd_codes.ICD_NM,
       icd_codes.PT_AGE
FROM public.variants_145K var
         INNER JOIN public.pVCF_145K USING (Var_ID)
         INNER JOIN public.icd_codes using (PT_ID)
#          INNER JOIN public.demographics USING (PT_ID)
WHERE Gene IN ('SLC9A6', 'SLC9A7')
  AND Canonical
  AND impact = 'high'
+------+-------------+-----------+-------+------------------------------------------------------------------+---------------------------------+---------+------------------------+------+------------------------------------+
| id   | select_type | table     | type  | possible_keys                                                    | key                             | key_len | ref                    | rows | Extra                              |
+------+-------------+-----------+-------+------------------------------------------------------------------+---------------------------------+---------+------------------------+------+------------------------------------+
|    1 | SIMPLE      | var       | range | PRIMARY,variants_145K_Gene_index,variants_145K_Impact_Gene_index | variants_145K_Impact_Gene_index | 125     | NULL                   | 280  | Using index condition; Using where |
|    1 | SIMPLE      | pVCF_145K | ref   | PRIMARY,pVCF_145K_PT_ID_index                                    | PRIMARY                         | 326     | public.var.Var_ID      | 268  |                                    |
|    1 | SIMPLE      | icd_codes | ref   | PRIMARY                                                          | PRIMARY                         | 38      | public.pVCF_145K.PT_ID | 29   |                                    |
+------+-------------+-----------+-------+------------------------------------------------------------------+---------------------------------+---------+------------------------+------+------------------------------------+

This query with a join on demographics takes over 11 minutes, and I'm not sure how to interpret the difference in the explain results. Why is it resorting to using the join buffer? How can I optimize this further?

EXPLAIN
SELECT variants_145K.Var_ID,
       variants_145K.Gene,
       variants_145K.HGVSc,
       pVCF_145K.PT_ID,
       pVCF_145K.AD_ALT,
       pVCF_145K.AD_REF,
       demographics.Sex,
       demographics.Age
FROM public.variants_145K
         INNER JOIN public.pVCF_145K USING (Var_ID)
#          inner join public.icd_codes using (PT_ID)
         INNER JOIN public.demographics USING (PT_ID)
WHERE Gene IN ('SLC9A6', 'SLC9A7')
  AND Canonical
  AND impact = 'high'
+------+-------------+---------------+--------+------------------------------------------------------------------+---------------------------------+---------+-------------------------------------------------------+---------+------------------------------------+
| id   | select_type | table         | type   | possible_keys                                                    | key                             | key_len | ref                                                   | rows    | Extra                              |
+------+-------------+---------------+--------+------------------------------------------------------------------+---------------------------------+---------+-------------------------------------------------------+---------+------------------------------------+
|    1 | SIMPLE      | variants_145K | range  | PRIMARY,variants_145K_Gene_index,variants_145K_Impact_Gene_index | variants_145K_Impact_Gene_index | 125     | NULL                                                  | 280     | Using index condition; Using where |
|    1 | SIMPLE      | demographics  | ALL    | PRIMARY                                                          | NULL                            | NULL    | NULL                                                  | 1916393 | Using join buffer (flat, BNL join) |
|    1 | SIMPLE      | pVCF_145K     | eq_ref | PRIMARY,pVCF_145K_PT_ID_index                                    | PRIMARY                         | 364     | public.variants_145K.Var_ID,public.demographics.PT_ID | 1       |                                    |
+------+-------------+---------------+--------+------------------------------------------------------------------+---------------------------------+---------+-------------------------------------------------------+---------+------------------------------------+

Adding a further filter in demographics (WHERE demographics.Platform IS NOT NULL) as shown below reduces to 38 seconds. However, there are queries where we do not use such filters so it would be ideal if it could use the primary PT_ID key in the joins.

+------+-------------+---------------+--------+------------------------------------------------------------------+---------------------------------+---------+-------------------------------------------------------+--------+------------------------------------------------------------------------+
| id   | select_type | table         | type   | possible_keys                                                    | key                             | key_len | ref                                                   | rows   | Extra                                                                  |
+------+-------------+---------------+--------+------------------------------------------------------------------+---------------------------------+---------+-------------------------------------------------------+--------+------------------------------------------------------------------------+
|    1 | SIMPLE      | variants_145K | range  | PRIMARY,variants_145K_Gene_index,variants_145K_Impact_Gene_index | variants_145K_Impact_Gene_index | 125     | NULL                                                  | 280    | Using index condition; Using where                                     |
|    1 | SIMPLE      | demographics  | range  | PRIMARY,Demographics_PLATFORM_index                              | Demographics_PLATFORM_index     | 17      | NULL                                                  | 258544 | Using index condition; Using where; Using join buffer (flat, BNL join) |
|    1 | SIMPLE      | pVCF_145K     | eq_ref | PRIMARY,pVCF_145K_PT_ID_index                                    | PRIMARY                         | 364     | public.variants_145K.Var_ID,public.demographics.PT_ID | 1      |                                                                        |
+------+-------------+---------------+--------+------------------------------------------------------------------+---------------------------------+---------+-------------------------------------------------------+--------+------------------------------------------------------------------------+

The tables:

create table public.demographics  # 1,916,393 rows
(
    PT_ID varchar(9) not null
        primary key,
    Age float(3,1) null,
    Status varchar(8) not null,
    Sex varchar(7) not null,
    Race_1 varchar(41) not null,
    Race_2 varchar(41) not null,
    Ethnicity varchar(22) not null,
    Smoker_flag tinyint(1) not null,
    Platform char(4) null,
    MyCode_Consent tinyint(1) not null,
    MR_ENC_DT date null,
    Birthday date null,
    Deathday date null,
    max_unrelated_145K tinyint unsigned null
);
create index Demographics_PLATFORM_index
    on public.demographics (Platform);

create table public.icd_codes  # 116,220,141 rows
(
    PT_ID varchar(9) not null,
    ICD_CD varchar(8) not null,
    ICD_NM varchar(217) not null,
    DX_DT date not null,
    PT_AGE float(3,1) unsigned not null,
    CODE_SYSTEM char(7) not null,
    primary key (PT_ID, ICD_CD, DX_DT)
);

create table public.pVCF_145K  # 10,113,244,082 rows
(
    Var_ID varchar(81) not null,
    PT_ID varchar(9) not null,
    GT tinyint unsigned not null,
    GQ smallint unsigned not null,
    AD_REF smallint unsigned not null,
    AD_ALT smallint unsigned not null,
    DP smallint unsigned not null,
    FT varchar(30) null,
    primary key (Var_ID, PT_ID)
);
create index pVCF_145K_PT_ID_index
    on public.pVCF_145K (PT_ID);

create table public.variants_145K  # 151,314,917 rows
(
    Var_ID varchar(81) not null,
    Gene varchar(22) null,
    Feature varchar(18) not null,
    Feature_type varchar(10) null,
    HIGH_INF_POS tinyint(1) null,
    Consequence varchar(26) not null,
    rsid varchar(34) null,
    Impact varchar(8) not null,
    Canonical tinyint(1) not null,
    Exon smallint unsigned null,
    Intron smallint unsigned null,
    HGVSc varchar(323) null,
    HGVSp varchar(196) null,
    AA_position smallint unsigned null,
    gnomAD_NFE_MAF float null,
    SIFT varchar(14) null,
    PolyPhen varchar(17) null,
    GHS_Hom mediumint(5) unsigned null,
    GHS_Het mediumint(5) unsigned null,
    GHS_WT mediumint(5) unsigned null,
    IDT_MAF float null,
    VCR_MAF float null,
    UKB_MAF float null,
    Chr tinyint unsigned not null,
    Pos int(9) unsigned not null,
    Ref varchar(298) not null,
    Alt varchar(306) not null,
    primary key (Var_ID, Feature)
);
create index variants_145K_Chr_Pos_Ref_Alt_index
    on public.variants_145K (Chr, Pos, Ref, Alt);

create index variants_145K_Gene_index
    on public.variants_145K (Gene);

create index variants_145K_Impact_Gene_index
    on public.variants_145K (Impact, Gene);

create index variants_145K_rsid_index
    on public.variants_145K (rsid);

This is on MariaDB 10.5.8 (innodb)

Thank you!


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

INDEX(impact, canonical, gene) or INDEX(canonical, impact, gene) is better for the var.

If you don't need it, remove INNER JOIN public.icd_codes USING (PT_ID). It is costly to reach into that table, and all it does is filter out any rows that fail in the JOIN.

Ditto for demographics.

The "join buffer" is not always a "resort to"; however, it is often a fast way. Especially if most of the table is needed and the join_buffer is big enough.

More

Note that demographics has a single-column PRIMARY KEY(PT_ID), but the other table has a composite PK. This probably impacts whether the Optimizer will even consider using the "join buffer".

Depending on a lot of things (in the query and the data), the Optimizer may make the wrong choice between join_buffer and repeatedly doing lookups.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...