Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
440 views
in Technique[技术] by (71.8m points)

c++ - Is there a really working example which showing the benefits of ILP(Instruction-Level Parallelism) on x86_64?

As known CPU is pipeline, and it works most efficiently if the sequence of commands independent from each other - this known as ILP (Instruction-Level Parallelism): http://en.wikipedia.org/wiki/Instruction-level_parallelism

But is there a really working example which showing the benefits of ILP, at least syntetic example, for CPU x86_64 (but for the same amount of cmp/jne in both cases)?

I will write the following example - add up all the elements of the array, but it does not show any advantages of ILP: http://ideone.com/fork/poWfsm

  • Sequential:
        for(i = 0; i < arr_size; i += 8) {
            result += arr[i+0] + arr[i+1] + 
                    arr[i+2] + arr[i+3] + 
                    arr[i+4] + arr[i+5] +
                    arr[i+6] + arr[i+7];
        }
  • ILP:
        register unsigned int v0, v1, v2, v3;
        v0 = v1 = v2 = v3 = 0;
        for(i = 0; i < arr_size; i += 8) {              
            v0 += arr[i+0] + arr[i+1];
            v1 += arr[i+2] + arr[i+3];
            v2 += arr[i+4] + arr[i+5];
            v3 += arr[i+6] + arr[i+7];
        }
        result = v0+v1+v2+v3;

Result:

seq: 0.100000 sec, res: 1000000000, ipl: 0.110000 sec, faster 0.909091 X, res: 1000000000

seq: 0.100000 sec, res: 1000000000, ipl: 0.100000 sec, faster 1.000000 X, res: 1000000000

seq: 0.100000 sec, res: 1000000000, ipl: 0.110000 sec, faster 0.909091 X, res: 1000000000

seq: 0.100000 sec, res: 1000000000, ipl: 0.100000 sec, faster 1.000000 X, res: 1000000000

seq: 0.110000 sec, res: 1000000000, ipl: 0.110000 sec, faster 1.000000 X, res: 1000000000

seq: 0.100000 sec, res: 1000000000, ipl: 0.110000 sec, faster 0.909091 X, res: 1000000000

seq: 0.100000 sec, res: 1000000000, ipl: 0.110000 sec, faster 0.909091 X, res: 1000000000

seq: 0.110000 sec, res: 1000000000, ipl: 0.100000 sec, faster 1.100000 X, res: 1000000000

seq: 0.110000 sec, res: 1000000000, ipl: 0.100000 sec, faster 1.100000 X, res: 1000000000

seq: 0.110000 sec, res: 1000000000, ipl: 0.120000 sec, faster 0.916667 X, res: 1000000000

faster AVG: 0.975303

ILP even a little slower than Sequential.

C-code: http://ideone.com/fork/poWfsm

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int main() {
    // create and init array
    const size_t arr_size = 100000000;
    unsigned int *arr = (unsigned int*) malloc(arr_size * sizeof(unsigned int));
    size_t i, k;
    for(i = 0; i < arr_size; ++i)
        arr[i] = 10;

    unsigned int result = 0;
    clock_t start, end;
    const int c_iterations = 10;    // iterations of experiment
    float faster_avg = 0;
    // -----------------------------------------------------------------


    for(k = 0; k < c_iterations; ++k) {
        result = 0; 

        // Sequential
        start = clock();

        for(i = 0; i < arr_size; i += 8) {
            result += arr[i+0] + arr[i+1] + 
                    arr[i+2] + arr[i+3] + 
                    arr[i+4] + arr[i+5] +
                    arr[i+6] + arr[i+7];
        }

        end = clock();
        const float c_time_seq = (float)(end - start)/CLOCKS_PER_SEC;   
        printf("seq: %f sec, res: %u, ", c_time_seq, result);
        // -----------------------------------------------------------------

        result = 0;

        // IPL-optimization
        start = clock();

        register unsigned int v0, v1, v2, v3;
        v0 = v1 = v2 = v3 = 0;

        for(i = 0; i < arr_size; i += 8) {

            v0 += arr[i+0] + arr[i+1];
            v1 += arr[i+2] + arr[i+3];
            v2 += arr[i+4] + arr[i+5];
            v3 += arr[i+6] + arr[i+7];


        }
        result = v0+v1+v2+v3;


        end = clock();
        const float c_time_ipl = (float)(end - start)/CLOCKS_PER_SEC;
        const float c_faster = c_time_seq/c_time_ipl;

        printf("ipl: %f sec, faster %f X, res: %u 
", c_time_ipl, c_faster, result);           
        faster_avg += c_faster;
    }

    faster_avg = faster_avg/c_iterations;
    printf("faster AVG: %f 
", faster_avg);

    return 0;
}

UPDATE:

  • Sequential (Disassembler MS Visual Studio 2013):
    for (i = 0; i < arr_size; i += 8) {
        result += arr[i + 0] + arr[i + 1] +
            arr[i + 2] + arr[i + 3] +
            arr[i + 4] + arr[i + 5] +
            arr[i + 6] + arr[i + 7];
    }

000000013F131080  mov         ecx,dword ptr [rdx-18h]  
000000013F131083  lea         rdx,[rdx+20h]  
000000013F131087  add         ecx,dword ptr [rdx-34h]  
000000013F13108A  add         ecx,dword ptr [rdx-30h]  
000000013F13108D  add         ecx,dword ptr [rdx-2Ch]  
000000013F131090  add         ecx,dword ptr [rdx-28h]  
000000013F131093  add         ecx,dword ptr [rdx-24h]  
000000013F131096  add         ecx,dword ptr [rdx-1Ch]  
000000013F131099  add         ecx,dword ptr [rdx-20h]  
000000013F13109C  add         edi,ecx  
000000013F13109E  dec         r8  
000000013F1310A1  jne         main+80h (013F131080h)  
  • ILP (Disassembler MS Visual Studio 2013):
    for (i = 0; i < arr_size; i += 8) {
        v0 += arr[i + 0] + arr[i + 1];
000000013F1310F0  mov         ecx,dword ptr [rdx-0Ch]  
        v1 += arr[i + 2] + arr[i + 3];
        v2 += arr[i + 4] + arr[i + 5];
000000013F1310F3  mov         eax,dword ptr [rdx+8]  
000000013F1310F6  lea         rdx,[rdx+20h]  
000000013F1310FA  add         ecx,dword ptr [rdx-28h]  
000000013F1310FD  add         eax,dword ptr [rdx-1Ch]  
000000013F131100  add         ebp,ecx  
000000013F131102  mov         ecx,dword ptr [rdx-24h]  
000000013F131105  add         ebx,eax  
000000013F131107  add         ecx,dword ptr [rdx-20h]  
        v3 += arr[i + 6] + arr[i + 7];
000000013F13110A  mov         eax,dword ptr [rdx-10h]  
        v3 += arr[i + 6] + arr[i + 7];
000000013F13110D  add         eax,dword ptr [rdx-14h]  
000000013F131110  add         esi,ecx  
000000013F131112  add         edi,eax  
000000013F131114  dec         r8  
000000013F131117  jne         main+0F0h (013F1310F0h) 
    }
    result = v0 + v1 + v2 + v3;

Compiler command line:

/GS /GL /W3 /Gy /Zc:wchar_t /Zi /Gm- /O2 /Ob2 /sdl /Fd"x64Releasevc120.pdb" /fp:precise /D "_MBCS" /errorReport:prompt /WX- /Zc:forScope /Gd /Oi /MT /Fa"x64Release" /EHsc /nologo /Fo"x64Release" /Ot /Fp"x64ReleaseIPL_reduce_test.pch" 

Additional Notes to the answer:

The simple example which showing the benefits of ILP between Unroll-loop and Unroll-loop+ILP for array of 50000000 double elements: http://ideone.com/LgTP6b

faster AVG: 1.152778

  • False-Sequential which can be optimized by CPU-pipeline (Disassembler MS Visual Studio 2013) - for add 8 elements in each iteration uses temporary register xmm0 which then adds to the result xmm6, i.e. can be used Register renaming:
result += arr[i + 0] + arr[i + 1] + arr[i + 2] + arr[i + 3] +
    arr[i + 4] + arr[i + 5] + arr[i + 6] + arr[i + 7];
000000013FBA1090  movsd       xmm0,mmword ptr [rcx-10h]  
000000013FBA1095  add         rcx,40h  
000000013FBA1099  addsd       xmm0,mmword ptr [rcx-48h]  
000000013FBA109E  addsd       xmm0,mmword ptr [rcx-40h]  
000000013FBA10A3  addsd       xmm0,mmword ptr [rcx-38h]  
000000013FBA10A8  addsd       xmm0,mmword ptr [rcx-30h]  
000000013FBA10AD  addsd       xmm0,mmword ptr [rcx-28h]  
000000013FBA10B2  addsd       xmm0,mmword ptr [rcx-20h]  
000000013FBA10B7  addsd       xmm0,mmword ptr [rcx-18h]  
000000013FBA10BC  addsd       xmm6,xmm0  
000000013FBA10C0  dec         rdx  
000000013FBA10C3  jne         main+90h (013FBA1090h) 
  • True-Sequential which can not be optimized by CPU-pipeline (Disassembler MS Visual Studio 2013) - for add 8 elements in each iteration uses the result register xmm6, i.e. can not be used Register renaming:
            result += arr[i + 0];
000000013FFC1090  addsd       xmm6,mmword ptr [rcx-10h]  
000000013FFC1095  add         rcx,40h  
            result += arr[i + 1];
000000013FFC1099  addsd       xmm6,mmword ptr [rcx-48h]  
            result += arr[i + 2];
000000013FFC109E  addsd       xmm6,mmword ptr [rcx-40h]  
            result += arr[i + 3];
000000013FFC10A3  addsd       xmm6,mmword ptr [rcx-38h]  
            result += arr[i + 4];
000000013FFC10A8  addsd       xmm6,mmword ptr [rcx-30h]  
            result += arr[i + 5];
000000013FFC10AD  addsd       xmm6,mmword ptr [rcx-28h]  
            result += arr[i + 6];
000000013FFC10B2  addsd       xmm6,mmword ptr [rcx-20h]  
            result += arr[i + 7];
000000013FFC10B7  addsd       xmm6,mmword ptr [rcx-18h]  
000000013FFC10BC  dec         rdx  
000000013FFC10BF  jne         main+90h (013FFC1090h) 
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

On most Intel processors, it takes 3 cycles to do a floating-point add. But it can sustain up to 1/cycle if they are independent.

We can easily demonstrate ILP by putting a floating-point add on the critical path.


Environment:

  • GCC 4.8.2: -O2
  • Sandy Bridge Xeon

Make sure that the compiler does not do unsafe floating-point optimizations.

#include <iostream>
using namespace std;

#include <time.h>

const int iterations = 1000000000;

double sequential(){
    double a = 2.3;
    double result = 0;

    for (int c = 0; c < iterations; c += 4){
        //  Every add depends on the previous add. No ILP is possible.
        result += a;
        result += a;
        result += a;
        result += a;
    }

    return result;
}
double optimized(){
    double a = 2.3;
    double result0 = 0;
    double result1 = 0;
    double result2 = 0;
    double result3 = 0;

    for (int c = 0; c < iterations; c += 4){
        //  4 independent adds. Up to 4 adds can be run in parallel.
        result0 += a;
        result1 += a;
        result2 += a;
        result3 += a;
    }

    return result0 + result1 + result2 + result3;
}

int main(){

    clock_t start0 = clock();
    double sum0 = sequential();
    clock_t end0 = clock();
    cout << "sum = " << sum0 << endl;
    cout << "sequential time: " << (double)(end0 - start0) / CLOCKS_PER_SEC << endl;

    clock_t start1 = clock();
    double sum1 = optimized();
    clock_t end1 = clock();
    cout << "sum = " << sum1 << endl;
    cout << "optimized time:  " << (double)(end1 - start1) / CLOCKS_PER_SEC << endl;

}

Output:

sum = 2.3e+09
sequential time: 0.948138
sum = 2.3e+09
optimized time:  0.317293

Notice how the difference is almost exactly 3x. That's because of the 3-cycle latency and 1-cycle throughput of the floating-point add.

The sequential version has very little ILP because all the floating-point adds are on the critical path. (each add needs to wait until the previous add is done) The unrolled version has 4 separate dependency chains with up to 4 independent adds - all of which can be run in parallel. Only 3 are required to saturate the processor core.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...