Your code updates the UI from a background thread, which is definitely not allowed. You need to ensure you update from the FX Application Thread. You also want to try to "throttle" the actual UI updates to occur no more than once per JavaFX frame rendering. The easiest way to do this is with an AnimationTimer
, whose handle()
method is invoked each time a frame is rendered.
Here's a version of your code which does that:
import java.awt.Dimension;
import java.awt.Image;
import java.awt.geom.AffineTransform;
import java.awt.image.AffineTransformOp;
import java.awt.image.BufferedImage;
import java.util.LinkedList;
import java.util.concurrent.atomic.AtomicReference;
import org.tc33.jheatchart.HeatChart;
import javafx.animation.AnimationTimer;
import javafx.application.Application;
import javafx.embed.swing.SwingFXUtils;
import javafx.scene.Scene;
import javafx.scene.image.ImageView;
import javafx.scene.layout.VBox;
import javafx.stage.Stage;
public class Main extends Application {
ImageView imageView = new ImageView();
final int scale = 15;
@Override
public void start(Stage primaryStage) {
AtomicReference<BufferedImage> image = new AtomicReference<>();
Thread generator = new Thread(() -> {
int col = 0;
LinkedList<Long> fps = new LinkedList<>();
while (true) {
fps.add(System.currentTimeMillis());
double[][] matrix = new double[48][128];
for (int i = 0; i < 48; i++) {
for (int j = 0; j < 128; j++) {
matrix[i][j] = col == j ? Math.random() : 0;
}
}
col = (col + 1) % 128;
HeatChart heatChart = new HeatChart(matrix, 0, 1);
heatChart.setShowXAxisValues(false);
heatChart.setShowYAxisValues(false);
heatChart.setLowValueColour(java.awt.Color.black);
heatChart.setHighValueColour(java.awt.Color.white);
heatChart.setAxisThickness(0);
heatChart.setChartMargin(0);
heatChart.setCellSize(new Dimension(1, 1));
long currentTime = System.currentTimeMillis();
fps.removeIf(elem -> currentTime - elem > 1000);
System.out.println(fps.size());
image.set((BufferedImage) scale(heatChart.getChartImage(), scale));
}
});
VBox box = new VBox();
box.getChildren().add(imageView);
Scene scene = new Scene(box, 1920, 720);
primaryStage.setScene(scene);
primaryStage.show();
generator.setDaemon(true);
generator.start();
AnimationTimer animation = new AnimationTimer() {
@Override
public void handle(long now) {
BufferedImage img = image.getAndSet(null);
if (img != null) {
imageView.setImage(SwingFXUtils.toFXImage(img, null));
}
}
};
animation.start();
}
public static void main(String[] args) {
launch(args);
}
private static Image scale(Image image, int scale) {
BufferedImage res = new BufferedImage(image.getWidth(null) * scale, image.getHeight(null) * scale,
BufferedImage.TYPE_INT_ARGB);
AffineTransform at = new AffineTransform();
at.scale(scale, scale);
AffineTransformOp scaleOp = new AffineTransformOp(at, AffineTransformOp.TYPE_NEAREST_NEIGHBOR);
return scaleOp.filter((BufferedImage) image, res);
}
}
Using the AtomicReference
to wrap the buffered image ensures that it is safely shared between the two threads.
On my machine, this generates about 130 images per second; note that not all are displayed, as only the latest one is shown each time the JavaFX graphics framework displays a frame (which is typically throttled at 60fps).
If you want to ensure you show all images that are generated, i.e. you throttle the image generation by the JavaFX framerate, then you can use a BlockingQueue
to store the images:
// AtomicReference<BufferedImage> image = new AtomicReference<>();
// Size of the queue is a trade-off between memory consumption
// and smoothness (essentially works as a buffer size)
BlockingQueue<BufferedImage> image = new ArrayBlockingQueue<>(5);
// ...
// image.set((BufferedImage) scale(heatChart.getChartImage(), scale));
try {
image.put((BufferedImage) scale(heatChart.getChartImage(), scale));
} catch (InterruptedException exc) {
Thread.currentThread.interrupt();
}
and
@Override
public void handle(long now) {
BufferedImage img = image.poll();
if (img != null) {
imageView.setImage(SwingFXUtils.toFXImage(img, null));
}
}
The code is pretty inefficient, as you generate a new matrix, new HeatChart
, etc, on every iteration. This causes many objects to be created on the heap and quickly discarded, which can cause the GC to be run too often, particularly on a small-memory machine. That said, I ran this with the maximum heap size set at 64MB, (-Xmx64m
), and it still performed fine. You may be able to optimize the code, but using the AnimationTimer
as shown above, generating images more quickly will not cause any additional stress on the JavaFX framework. I would recommend investigating using the mutability of HeatChart
(i.e. setZValues()
) to avoid creating too many objects, and/or using PixelBuffer
to directly write data to the image view (this would need to be done on the FX Application Thread).
Here's a different example, which (almost) completely minimizes object creation, using one off-screen int[]
array to compute data, and one on-screen int[]
array to display it. There's a little low-level threading details to ensure the on-screen array is only seen in a consistent state. The on-screen array is used to underly a PixelBuffer
, which in turn is used for a WritableImage
.
This class generates the image data:
import java.util.concurrent.atomic.AtomicLong;
import java.util.concurrent.locks.ReentrantLock;
import java.util.function.Consumer;
public class ImageGenerator {
private final int width;
private final int height;
// Keep two copies of the data: one which is not exposed
// that we modify on the fly during computation;
// another which we expose publicly.
// The publicly exposed one can be viewed only in a complete
// state if operations on it are synchronized on this object.
private final int[] privateData ;
private final int[] publicData ;
private final long[] frameTimes ;
private int currentFrameIndex ;
private final AtomicLong averageGenerationTime ;
private final ReentrantLock lock ;
private static final double TWO_PI = 2 * Math.PI;
private static final double PI_BY_TWELVE = Math.PI / 12; // 15 degrees
public ImageGenerator(int width, int height) {
super();
this.width = width;
this.height = height;
privateData = new int[width * height];
publicData = new int[width * height];
lock = new ReentrantLock();
this.frameTimes = new long[100];
this.averageGenerationTime = new AtomicLong();
}
public void generateImage(double angle) {
// compute in private data copy:
int minDim = Math.min(width, height);
int minR2 = minDim * minDim / 4;
for (int x = 0; x < width; x++) {
int xOff = x - width / 2;
int xOff2 = xOff * xOff;
for (int y = 0; y < height; y++) {
int index = x + y * width;
int yOff = y - height / 2;
int yOff2 = yOff * yOff;
int r2 = xOff2 + yOff2;
if (r2 > minR2) {
privateData[index] = 0xffffffff; // white
} else {
double theta = Math.atan2(yOff, xOff);
double delta = Math.abs(theta - angle);
if (delta > TWO_PI - PI_BY_TWELVE) {
delta = TWO_PI - delta;
}
if (delta < PI_BY_TWELVE) {
int green = (int) (255 * (1 - delta / PI_BY_TWELVE));
privateData[index] = (0xff << 24) | (green << 8); // green, fading away from center
} else {
privateData[index] = 0xff << 24; // black
}
}
}
}
// copy computed data to public data copy:
lock.lock();
try {
System.arraycopy(privateData, 0, publicData, 0, privateData.length);
} finally {
lock.unlock();
}
frameTimes[currentFrameIndex] = System.nanoTime() ;
int nextIndex = (currentFrameIndex + 1) % frameTimes.length ;
if (frameTimes[nextIndex] > 0) {
averageGenerationTime.set((frameTimes[currentFrameIndex] - frameTimes[nextIndex]) / frameTimes.length);
}
currentFrameIndex = nextIndex ;
}
public void consumeData(Consumer<int[]> consumer) {
lock.lock();
try {
consumer.accept(publicData);
} finally {
lock.unlock();
}
}
public long getAverageGenerationTime() {
return averageGenerationTime.get() ;
}
}
And here's the UI:
import java.nio.IntBuffer;
import javafx.animation.AnimationTimer;
import javafx.application.Application;
import javafx.scene.Scene;
import javafx.scene.control.Label;
import javafx.scene.image.ImageView;
import javafx.scene.image.PixelFormat;
import javafx.scene.image.PixelWriter;
import javafx.scene.image.WritableImage;
import javafx.scene.layout.BorderPane;
import javafx.stage.Stage;
public class AnimationApp extends Application {
private final int size = 400 ;
private IntBuffer buffer ;
@Override
public void start(Stage primaryStage) throws Exception {
// background image data generation:
ImageGenerator generator = new ImageGenerator(size, size);
// Generate new image data as fast as possible:
Thread thread = new Thread(() -> {
while( true ) {
long now = System.currentTimeMillis() ;
double angle = 2 * Math.PI * (now % 10000) / 10000 - Math.PI;
generator.generateImage(angle);
}
});
thread.setDaemon(true);
thread.start();
generator.consumeData(data -> buffer = IntBuffer.wrap(data));
PixelFormat<IntBuffer> format = PixelFormat.getIntArgbPreInstance() ;
PixelBuffer<IntBuffer> pixelBuffer = new PixelBuffer<>(size, size, buffer, format);
WritableImage image = new WritableImage(pixelBuffer);
BorderPane root = new BorderPane(new ImageView(image));
Label fps = new Label("FPS: ");
root.setTop(fps);
Scene scene =