Use rbind
and colMeans
as in:
> rbind(tbl_mut, colMeans = colMeans(tbl_mut))
timetE4_1 timetE1_2 timetE2_2 timetE3_2 timetE4_2 eve_mean mor_mean tot_mean
1 4048.605 59094.48 27675.59 26374.06 43310.01 7774.442 39113.53 23443.99
2 45729.986 139889.21 111309.64 129781.17 96924.62 43374.117 119476.16 81425.14
3 639686.154 1764684.16 1117027.29 1147967.45 1156442.48 585562.724 1296530.34 941046.53
4 4466.153 26250.32 20320.08 18413.54 29061.25 3866.547 23511.30 13688.92
colMeans 173482.724 497479.54 319083.15 330634.05 331434.59 160144.458 369657.83 264901.15
EDIT
Suppose your data frame contains both numeric and non-numeric columns (like the 'Description' column):
> df
Description timetE4_1 timetE1_2 timetE2_2 timetE3_2 timetE4_2 eve_mean mor_mean tot_mean
1 A 4048.605 59094.48 27675.59 26374.06 43310.01 7774.442 39113.53 23443.99
2 B 45729.986 139889.21 111309.64 129781.17 96924.62 43374.117 119476.16 81425.14
3 C 639686.154 1764684.16 1117027.29 1147967.45 1156442.48 585562.724 1296530.34 941046.53
4 D 4466.153 26250.32 20320.08 18413.54 29061.25 3866.547 23511.30 13688.92
...then you can use sapply(df, is.numeric)
to obtain the numeric columns, on which you then calculate colmeans
.
> suppressWarnings(rbind(df, colMeans = colMeans(df[, sapply(df, is.numeric)])))
Description timetE4_1 timetE1_2 timetE2_2 timetE3_2 timetE4_2 eve_mean mor_mean tot_mean
1 A 4048.605 59094.48 27675.59 26374.06 43310.01 7774.442 39113.53 23443.99
2 B 45729.986 139889.21 111309.64 129781.17 96924.62 43374.117 119476.16 81425.14
3 C 639686.154 1764684.16 1117027.29 1147967.45 1156442.48 585562.724 1296530.34 941046.53
4 D 4466.153 26250.32 20320.08 18413.54 29061.25 3866.547 23511.30 13688.92
colMeans <NA> 497479.542 319083.15 330634.05 331434.59 160144.46 369657.833 264901.15 173482.72
Or if you know the index of the non-numeric variable, e.g. the first column, you can de-select that column with df[, -1]
:
suppressWarnings(rbind(df, colMeans = colMeans(df[, -1])))
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…