I want to create a custom attention layer that for input at any time this layer returns the weighted mean of inputs at all time inputs.
For Example, I want that input tensor with shape [32,100,2048]
goes to layer and I get the tensor with the shape [32,100,2048]
. I wrote the Layer as follow:
import tensorflow as tf
from keras.layers import Layer, Dense
#or
from tensorflow.keras.layers import Layer, Dense
class Attention(Layer):
def __init__(self, units_att):
self.units_att = units_att
self.W = Dense(units_att)
self.V = Dense(1)
super().__init__()
def __call__(self, values):
t = tf.constant(0, dtype= tf.int32)
time_steps = tf.shape(values)[1]
initial_outputs = tf.TensorArray(dtype=tf.float32, size=time_steps)
initial_att = tf.TensorArray(dtype=tf.float32, size=time_steps)
def should_continue(t, *args):
return t < time_steps
def iteration(t, values, outputs, atts):
score = self.V(tf.nn.tanh(self.W(values)))
# attention_weights shape == (batch_size, time_step, 1)
attention_weights = tf.nn.softmax(score, axis=1)
# context_vector shape after sum == (batch_size, hidden_size)
context_vector = attention_weights * values
context_vector = tf.reduce_sum(context_vector, axis=1)
outputs = outputs.write(t, context_vector)
atts = atts.write(t, attention_weights)
return t + 1, values, outputs, atts
t, values, outputs, atts = tf.while_loop(should_continue, iteration,
[t, values, initial_outputs, initial_att])
outputs = outputs.stack()
outputs = tf.transpose(outputs, [1,0,2])
atts = atts.stack()
atts = tf.squeeze(atts, -1)
atts = tf.transpose(atts, [1,0,2])
return t, values, outputs, atts
For input= tf.constant(2, shape= [32, 100, 2048], dtype= tf.float32)
I get the
output with shape = [32,100,2048]
in tf2 and [32,None, 2048]
in tf1.
For Input input= Input(shape= (None, 2048))
I get the output with shape = [None, None, 2048]
in tf1 and I get error
TypeError: 'Tensor' object cannot be interpreted as an integer
in tf2.
Finally, in both cases, I can't use this layer in my model because my model input is Input(shape= (None, 2048))
and I get the error
AttributeError: 'NoneType' object has no attribute '_inbound_nodes'
in tf1 and in tf2 I get the same error as said in above, I create my model with Keras
functional method.
See Question&Answers more detail:
os