Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
678 views
in Technique[技术] by (71.8m points)

node.js - How to decrypt cookie with nodejs

I am trying to make run this

function hex2a(hex) {
    var str = '';
    for (var i = 0; i < hex.length; i += 2)
        str += String.fromCharCode(parseInt(hex.substr(i, 2), 16));
    return str;
}

//Raw cookie
var cookie = "B417B464CA63FE780584563D2DA4709B03F6195189044C26A29770F3203881DD90B1428139088D945CF6807CA408F201DABBADD59CE1D740F853A894692273F1CA83EC3F26493744E3D25D720374E03393F71E21BE2D96B6110CB7AC12E44447FFBD810D3D57FBACA8DF5249EB503C3DFD255692409F084650EFED205388DD8C08BF7B941E1AC1B3B70B9A8E09118D756BEAFF25834E72357FD40E80E76458091224FAE8";

//decryptionKey from issuers <machineKey>
var deckey = "FFA87B82D4A1BEAA15C06F6434A7EB2251976A838784E134900E6629B9F954B7";


var crypto = require('crypto');

var ivc = cookie, iv, cipherText, ivSize = 16, res = "";

ivc = new Buffer(ivc, 'hex');
iv = new Buffer(ivSize);
cipherText = new Buffer(ivc.length - ivSize);
ivc.copy(iv, 0, 0, ivSize);
ivc.copy(cipherText, 0, ivSize);

c = crypto.createDecipheriv('aes-256-cbc', hex2a(deckey), iv.toString('binary'));
res = c.update(cipherText, "binary", "utf8");
res += c.final('utf8');


console.log(res);

In this Q&A, it mentions about differences about node js versions, I tried that apply that one but with out success:

res = c.update(cipherText, "binary", "utf8");

line result such result

?sJ舸=?X7D??????G????}x???T

and

res += c.final('utf8'); 

gives this error

0606506D:digital envelope routines:EVP_DecryptFinal_ex:wrong final block length

nodejs version: 4.1.2 and crypto version 0.0.3

How can I properly decrypt cookie with this algorith or can you suggest any other?

See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

[Assuming you are trying to decrypt a .NET framework cookie]:

(Note: This answer was completely rewritten as things were not as simple as it seemed)

The encryption schema is described here, citing interesting parts:

VERIFY + DECRYPT DATA (fEncrypt = false, signData = true)

  • Input: buf represents ciphertext to decrypt, modifier represents data to be removed from the end of the plaintext (since it's not really plaintext data)
  • Input (buf): E(iv + m + modifier) + HMAC(E(iv + m + modifier))
  • Output: m

  • The 'iv' in the above descriptions isn't an actual IV. Rather, if ivType = > IVType.Random, we'll prepend random bytes ('iv') to the plaintext before feeding it to the crypto algorithms. Introducing randomness early in the algorithm prevents users from inspecting two ciphertexts to see if the plaintexts are related. If ivType = IVType.None, then 'iv' is simply an empty string. If ivType = IVType.Hash, we use a non-keyed hash of the plaintext.

  • The 'modifier' in the above descriptions is a piece of metadata that should be encrypted along with the plaintext but which isn't actually part of the plaintext itself. It can be used for storing things like the user name for whom this plaintext was generated, the page that generated the plaintext, etc. On decryption, the modifier parameter is compared against the modifier stored in the crypto stream, and it is stripped from the message before the plaintext is returned.

Which is (hopefully) implemented with the following script:

// Input
var cookie = "B417B464CA63FE780584563D2DA4709B03F6195189044C26A29770F3203881DD90B1428139088D945CF6807CA408F201DABBADD59CE1D740F853A894692273F1CA83EC3F26493744E3D25D720374E03393F71E21BE2D96B6110CB7AC12E44447FFBD810D3D57FBACA8DF5249EB503C3DFD255692409F084650EFED205388DD8C08BF7B941E1AC1B3B70B9A8E09118D756BEAFF25834E72357FD40E80E76458091224FAE8";
var decryptionKey = "FFA87B82D4A1BEAA15C06F6434A7EB2251976A838784E134900E6629B9F954B7";
var validationKey = "A5326FFC9D3B74527AECE124D0B7BE5D85D58AFB12AAB3D76319B27EE57608A5A7BCAB5E34C7F1305ECE5AC78DB1FFEC0A9435C316884AB4C83D2008B533CFD9";

// Parameters
var hmacSize=20

// Make buffers for input
var cookieBuffer = new Buffer(cookie, 'hex');
var decryptionKeyBuffer = new Buffer(decryptionKey, 'hex');
var validationKeyBuffer = new Buffer(validationKey, 'hex');

// Parse cookie
var curOffset=0;
var cipherText = new Buffer(cookieBuffer.length - hmacSize);
curOffset+=cookieBuffer.copy(cipherText, 0, curOffset, curOffset+cipherText.length);
var hmac = new Buffer(hmacSize);
curOffset+=cookieBuffer.copy(hmac, 0, curOffset, curOffset+hmac.length);

// Verify HMAC
var crypto = require('crypto');
var h = crypto.createHmac('sha1', validationKeyBuffer);
h.update(cipherText);
var expectedHmac = h.digest();
console.log('Expected HMAC: ' + expectedHmac.toString('hex'));
console.log('Actual   HMAC: ' + hmac.toString('hex'));
//if(!expectedHmac.equals(hmac)) { // Note: Requires nodejs v0.11.13
//    throw 'Cookie integrity error';
//}

// Decrypt
var zeroIv = new Buffer("00000000000000000000000000000000", 'hex');
var c = crypto.createDecipheriv('aes-256-cbc', decryptionKeyBuffer, zeroIv);
var plaintext = Buffer.concat([c.update(cipherText), c.final()]);

// Strip IV (which is the same length as decryption key -- see notes below)
var res = new Buffer(plaintext.length-decryptionKeyBuffer.length);
plaintext.copy(res, 0, decryptionKeyBuffer.length, plaintext.length);

// Output
console.log('HEX: ' + res.toString('hex'));
console.log('UTF-8: ' + res.toString('utf8'));

Giving result:

Expected HMAC: 88e332b9a27b8f6f8d805ae718c562c1c8b721ed
Actual   HMAC: 6beaff25834e72357fd40e80e76458091224fae8
HEX: 010112ea9a47b2f2ce08fe121e7d78b6f2ce0801085400650073007400550073006500720016540065007300740020007400650073007400730073006f006e002c00200072006f006c0066007a006f007200012f00ff1d892908d9c497bd804f5f22eab043ff6368702c
UTF-8: ??G???}x?TestUserTest testsson, rolfzor/??????O_"??C?chp,

Some (random) notes about this code:

  • it assumes that AES is used for encryption and HMAC-SHA1 is used for authentication

  • as the used authentication key is not known, the integrity check condition is commented out and verification key from this very related question is used (which is the reason for authentication tag mismatch)

  • the padding used for AES encryption is PKCS#7

  • the 'modifier' field is assumed empty. If this is not the case you would have to check it and remove it from the plaintext

  • for production environment you definitely should check the authentication tag (otherwise you would expose yourself to nasty attacks)

  • to avoid even nastier attacks, the authentication tag should be tested for equality in constant time (which might be tricky to implement in nodejs). Please note that the commented-out code is very probably vulnerable to timing-attacks.

  • the IV length is equal to the key length (see here for the reason)

Disclaimer: I did not study the original .NET code thoroughly, nor am I a crypto expert so please do validate my thoughts

Good luck!


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...