I cannot give you the reason why exactly this happens, but I can show you how to cure the symptoms. Before I start: This is a known problem with the termination checker. If you are well-versed in Haskell, you could take a look at the source.
One possible solution is to split the function into two: first one for the case where the first argument gets smaller and second for the second one:
mutual
merge : List ? → List ? → List ?
merge (x ∷ xs) (y ∷ ys) with x ≤? y
... | yes _ = x ∷ merge xs (y ∷ ys)
... | no _ = y ∷ merge′ x xs ys
merge xs ys = xs ++ ys
merge′ : ? → List ? → List ? → List ?
merge′ x xs (y ∷ ys) with x ≤? y
... | yes _ = x ∷ merge xs (y ∷ ys)
... | no _ = y ∷ merge′ x xs ys
merge′ x xs [] = x ∷ xs
So, the first function chops down xs
and once we have to chop down ys
, we switch to the second function and vice versa.
Another (perhaps surprising) option, which is also mentioned in the issue report, is to introduce the result of recursion via with
:
merge : List ? → List ? → List ?
merge (x ∷ xs) (y ∷ ys) with x ≤? y | merge xs (y ∷ ys) | merge (x ∷ xs) ys
... | yes _ | r | _ = x ∷ r
... | no _ | _ | r = y ∷ r
merge xs ys = xs ++ ys
And lastly, we can perform the recursion on Vec
tors and then convert back to List
:
open import Data.Vec as V
using (Vec; []; _∷_)
merge : List ? → List ? → List ?
merge xs ys = V.toList (go (V.fromList xs) (V.fromList ys))
where
go : ? {n m} → Vec ? n → Vec ? m → Vec ? (n + m)
go {suc n} {suc m} (x ∷ xs) (y ∷ ys) with x ≤? y
... | yes _ = x ∷ go xs (y ∷ ys)
... | no _ rewrite lem n m = y ∷ go (x ∷ xs) ys
go xs ys = xs V.++ ys
However, here we need a simple lemma:
open import Relation.Binary.PropositionalEquality
lem : ? n m → n + suc m ≡ suc (n + m)
lem zero m = refl
lem (suc n) m rewrite lem n m = refl
We could also have go
return List
directly and avoid the lemma altogether:
merge : List ? → List ? → List ?
merge xs ys = go (V.fromList xs) (V.fromList ys)
where
go : ? {n m} → Vec ? n → Vec ? m → List ?
go (x ∷ xs) (y ∷ ys) with x ≤? y
... | yes _ = x ∷ go xs (y ∷ ys)
... | no _ = y ∷ go (x ∷ xs) ys
go xs ys = V.toList xs ++ V.toList ys
The first trick (i.e. split the function into few mutually recursive ones) is actually quite good to remember. Since the termination checker doesn't look inside the definitions of other functions you use, it rejects a great deal of perfectly fine programs, consider:
data Rose {a} (A : Set a) : Set a where
[] : Rose A
node : A → List (Rose A) → Rose A
And now, we'd like to implement mapRose
:
mapRose : ? {a b} {A : Set a} {B : Set b} →
(A → B) → Rose A → Rose B
mapRose f [] = []
mapRose f (node t ts) = node (f t) (map (mapRose f) ts)
The termination checker, however, doesn't look inside the map
to see if it doesn't do anything funky with the elements and just rejects this definition. We must inline the definition of map
and write a pair of mutually recursive functions:
mutual
mapRose : ? {a b} {A : Set a} {B : Set b} →
(A → B) → Rose A → Rose B
mapRose f [] = []
mapRose f (node t ts) = node (f t) (mapRose′ f ts)
mapRose′ : ? {a b} {A : Set a} {B : Set b} →
(A → B) → List (Rose A) → List (Rose B)
mapRose′ f [] = []
mapRose′ f (t ∷ ts) = mapRose f t ∷ mapRose′ f ts
Usually, you can hide most of the mess in a where
declaration:
mapRose : ? {a b} {A : Set a} {B : Set b} →
(A → B) → Rose A → Rose B
mapRose {A = A} {B = B} f = go
where
go : Rose A → Rose B
go-list : List (Rose A) → List (Rose B)
go [] = []
go (node t ts) = node (f t) (go-list ts)
go-list [] = []
go-list (t ∷ ts) = go t ∷ go-list ts
Note: Declaring signatures of both functions before they are defined can be used instead of mutual
in newer versions of Agda.
Update: The development version of Agda got an update to the termination checker, I'll let the commit message and release notes speak for themselves:
- A revision of call graph completion that can deal with arbitrary termination depth.
This algorithm has been sitting around in MiniAgda for some time,
waiting for its great day. It is now here!
Option --termination-depth can now be retired.
And from the release notes:
Termination checking of functions defined by 'with' has been improved.
Cases which previously required --termination-depth (now obsolete!)
to pass the termination checker (due to use of 'with') no longer
need the flag. For example
merge : List A → List A → List A
merge [] ys = ys
merge xs [] = xs
merge (x ∷ xs) (y ∷ ys) with x ≤ y
merge (x ∷ xs) (y ∷ ys) | false = y ∷ merge (x ∷ xs) ys
merge (x ∷ xs) (y ∷ ys) | true = x ∷ merge xs (y ∷ ys)
This failed to termination check previously, since the 'with'
expands to an auxiliary function merge-aux:
merge-aux x y xs ys false = y ∷ merge (x ∷ xs) ys
merge-aux x y xs ys true = x ∷ merge xs (y ∷ ys)
This function makes a call to merge in which the size of one of the
arguments is increasing. To make this pass the termination checker
now inlines the definition of merge-aux before checking, thus
effectively termination checking the original source program.
As a result of this transformation doing 'with' on a variable no
longer preserves termination. For instance, this does not
termination check:
bad : Nat → Nat
bad n with n
... | zero = zero
... | suc m = bad m
And indeed, your original function now passes the termination check!