phivers comment is spot on, however I would still like to provide a more verbose answer on this concrete example.
In order to investigate what is going on in more detail one should add the argument savePredictions = "all"
to trainControl
:
control = trainControl(method = 'repeatedcv',
number = 10,
repeats = 3,
returnResamp = "all",
savePredictions = "all")
metric = 'RMSE'
set.seed(3)
fit = train(casual ~.,
data = dataset_selected,
method = 'nnet',
metric = metric,
trControl = control,
trace = FALSE,
form = "traditional")
now when running:
fit$results
#output
size decay RMSE Rsquared MAE RMSESD RsquaredSD MAESD
1 1 0e+00 0.9999205 NaN 0.8213177 0.009655872 NA 0.007919575
2 1 1e-04 0.9479487 0.1850270 0.7657225 0.074211541 0.20380571 0.079640883
3 1 1e-01 0.8801701 0.3516646 0.6937938 0.074484860 0.20787440 0.077960642
4 3 0e+00 0.9999205 NaN 0.8213177 0.009655872 NA 0.007919575
5 3 1e-04 0.9272942 0.2482794 0.7434689 0.091409600 0.24363651 0.098854133
6 3 1e-01 0.7943899 0.6193242 0.5944279 0.011560524 0.03299137 0.013002708
7 5 0e+00 0.9999205 NaN 0.8213177 0.009655872 NA 0.007919575
8 5 1e-04 0.8811411 0.3621494 0.6941335 0.092169810 0.22980560 0.098987058
9 5 1e-01 0.7896507 0.6431808 0.5870894 0.009947324 0.01063359 0.009121535
we notice the problem occurs when decay = 0
.
lets filter the observations and predictions for decay = 0
library(tidyverse)
fit$pred %>%
filter(decay == 0) -> for_r2
var(for_r2$pred)
#output
0
we can observe that all of the predictions when decay == 0
are the same (have zero variance). The model exclusively predicts 0:
unique(for_r2$pred)
#output
0
So when the summary function tries to predict R squared:
caret::R2(for_r2$obs, for_r2$pred)
#output
[1] NA
Warning message:
In cor(obs, pred, use = ifelse(na.rm, "complete.obs", "everything")) :
the standard deviation is zero
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…