The data source is from Databricks Notebook demo:Five Spark SQL Helper Utility Functions to Extract and Explore Complex Data Types!
But when I try these code on my own laptop, I always get errors.
First, load JSON data as DataFrame
res2: org.apache.spark.sql.DataFrame = [battery_level: string, c02_level: string]
scala> res2.show
+-------------+---------+
|battery_level|c02_level|
+-------------+---------+
| 7| 886|
| 5| 1378|
| 8| 917|
| 8| 1504|
| 8| 831|
| 9| 1304|
| 8| 1574|
| 9| 1208|
+-------------+---------+
Second, write
data to Kafka:
res2.write
.format("kafka")
.option("kafka.bootstrap.servers", "localhost:9092")
.option("topic", "test")
.save()
All of those follows the notebook demo above and official steps
But errors shows:
scala> res2.write
.format("kafka")
.option("kafka.bootstrap.servers", "localhost:9092")
.option("topic", "iot-devices")
.save()
org.apache.spark.sql.AnalysisException: Required attribute 'value' not found;
at org.apache.spark.sql.kafka010.KafkaWriter$$anonfun$6.apply(KafkaWriter.scala:72)
at org.apache.spark.sql.kafka010.KafkaWriter$$anonfun$6.apply(KafkaWriter.scala:72)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.kafka010.KafkaWriter$.validateQuery(KafkaWriter.scala:71)
at org.apache.spark.sql.kafka010.KafkaWriter$.write(KafkaWriter.scala:87)
at org.apache.spark.sql.kafka010.KafkaSourceProvider.createRelation(KafkaSourceProvider.scala:165)
at org.apache.spark.sql.execution.datasources.DataSource.write(DataSource.scala:472)
at org.apache.spark.sql.execution.datasources.SaveIntoDataSourceCommand.run(SaveIntoDataSourceCommand.scala:48)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult$lzycompute(commands.scala:58)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.sideEffectResult(commands.scala:56)
at org.apache.spark.sql.execution.command.ExecutedCommandExec.doExecute(commands.scala:74)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:117)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:117)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:138)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:135)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:116)
at org.apache.spark.sql.execution.QueryExecution.toRdd$lzycompute(QueryExecution.scala:92)
at org.apache.spark.sql.execution.QueryExecution.toRdd(QueryExecution.scala:92)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:610)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:233)
... 52 elided
I assumed that it might be the Kafka problem, then I test the DataFrame read
from Kafka to ensure the connectivity:
scala> val kaDF = spark.read
.format("kafka")
.option("kafka.bootstrap.servers", "localhost:9092")
.option("subscribe", "iot-devices")
.load()
kaDF: org.apache.spark.sql.DataFrame = [key: binary, value: binary ... 5 more fields]
scala> kaDF.show
+----+--------------------+-----------+---------+------+--------------------+-------------+
| key| value| topic|partition|offset| timestamp|timestampType|
+----+--------------------+-----------+---------+------+--------------------+-------------+
|null| [73 73 73 73 73]|iot-devices| 0| 0|2017-09-27 11:11:...| 0|
|null|[64 69 63 6B 20 3...|iot-devices| 0| 1|2017-09-27 11:29:...| 0|
|null| [78 69 78 69]|iot-devices| 0| 2|2017-09-27 11:29:...| 0|
|null|[31 20 32 20 33 2...|iot-devices| 0| 3|2017-09-27 11:30:...| 0|
+----+--------------------+-----------+---------+------+--------------------+-------------+
So, the result shows that reading data in topic "iot-devices" from Kafka bootstrap.servers localhost:9092
does work.
I searched a lot online, but still can't solve it?
Can Anybody with Spark SQL experience tell me what is wrong in my command?
Thanks!
See Question&Answers more detail:
os