Here's a method that works for an array with dtype np.uint8
that is faster than np.unique
.
First, create an array to work with:
In [128]: a = np.random.randint(1, 128, size=(10, 3000, 3000)).astype(np.uint8)
For later comparison, find the unique values using np.unique
:
In [129]: u = np.unique(a)
Here's the faster method; v
will contain the result:
In [130]: q = np.zeros(256, dtype=int)
In [131]: q[a.ravel()] = 1
In [132]: v = np.nonzero(q)[0]
Verify that we got the same result:
In [133]: np.array_equal(u, v)
Out[133]: True
Timing:
In [134]: %timeit u = np.unique(a)
2.86 s ± 9.02 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [135]: %timeit q = np.zeros(256, dtype=int); q[a.ravel()] = 1; v = np.nonzero(q)
300 ms ± 5.52 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
So 2.86 seconds for np.unique()
, and 0.3 seconds for the alternative method.
与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…