Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Welcome To Ask or Share your Answers For Others

Categories

0 votes
2.3k views
in Technique[技术] by (71.8m points)

apache spark - pyspark - getting Latest partition from Hive partitioned column logic

I am new to pySpark. I am trying get the latest partition (date partition) of a hive table using PySpark-dataframes and done like below. But I am sure there is a better way to do it using dataframe functions (not by writing SQL). Could you please share inputs on better ways.

This solution is scanning through entire data on Hive table to get it.

df_1 = sqlContext.table("dbname.tablename");

df_1_dates = df_1.select('partitioned_date_column').distinct().orderBy(df_1['partitioned_date_column'].desc())

lat_date_dict=df_1_dates.first().asDict()

lat_dt=lat_date_dict['partitioned_date_column']
See Question&Answers more detail:os

与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome To Ask or Share your Answers For Others

1 Answer

0 votes
by (71.8m points)

I agree with @philantrovert what has mentioned in the comment. You can use below approach for partition pruning to filter to limit the number of partitions scanned for your hive table.

>>> spark.sql("""show partitions test_dev_db.newpartitiontable""").show();
+--------------------+
|           partition|
+--------------------+
|tran_date=2009-01-01|
|tran_date=2009-02-01|
|tran_date=2009-03-01|
|tran_date=2009-04-01|
|tran_date=2009-05-01|
|tran_date=2009-06-01|
|tran_date=2009-07-01|
|tran_date=2009-08-01|
|tran_date=2009-09-01|
|tran_date=2009-10-01|
|tran_date=2009-11-01|
|tran_date=2009-12-01|
+--------------------+

>>> max_date=spark.sql("""show partitions test_dev_db.newpartitiontable""").rdd.flatMap(lambda x:x).map(lambda x : x.replace("tran_date=","")).max()
>>> print max_date
2009-12-01
>>> query = "select city,state,country from test_dev_db.newpartitiontable where tran_date ='{}'".format(max_date)

>>> spark.sql(query).show();
+--------------------+----------------+--------------+
|                city|           state|       country|
+--------------------+----------------+--------------+
|         Southampton|         England|United Kingdom|
|W Lebanon        ...|              NH| United States|
|               Comox|British Columbia|        Canada|
|           Gasperich|      Luxembourg|    Luxembourg|
+--------------------+----------------+--------------+

>>> spark.sql(query).explain(True)
== Parsed Logical Plan ==
'Project ['city, 'state, 'country]
+- 'Filter ('tran_date = 2009-12-01)
   +- 'UnresolvedRelation `test_dev_db`.`newpartitiontable`

== Analyzed Logical Plan ==
city: string, state: string, country: string
Project [city#9, state#10, country#11]
+- Filter (tran_date#12 = 2009-12-01)
   +- SubqueryAlias newpartitiontable
      +- Relation[city#9,state#10,country#11,tran_date#12] orc

== Optimized Logical Plan ==
Project [city#9, state#10, country#11]
+- Filter (isnotnull(tran_date#12) && (tran_date#12 = 2009-12-01))
   +- Relation[city#9,state#10,country#11,tran_date#12] orc

== Physical Plan ==
*(1) Project [city#9, state#10, country#11]
+- *(1) FileScan orc test_dev_db.newpartitiontable[city#9,state#10,country#11,tran_date#12] Batched: true, Format: ORC, Location: PrunedInMemoryFileIndex[hdfs://xxx.host.com:8020/user/xxx/dev/hadoop/database/test_dev..., PartitionCount: 1, PartitionFilters: [isnotnull(tran_date#12), (tran_date#12 = 2009-12-01)], PushedFilters: [], ReadSchema: struct<city:string,state:string,country:string>

you can see in above plan that PartitionCount: 1 it has scanned only one partition from 12 available partitions.


与恶龙缠斗过久,自身亦成为恶龙;凝视深渊过久,深渊将回以凝视…
Welcome to OStack Knowledge Sharing Community for programmer and developer-Open, Learning and Share
Click Here to Ask a Question

...