We have the diameter of trees as the predictor and tree height as the dependent variable. A number of different equations exist for this kind of data and we try to model some of them and compare the results.
However, we we can't figure out how to correctly put one equation into the corresponding R
formula
format.
The trees
data set in R
can be used as an example.
data(trees)
df <- trees
df$h <- df$Height * 0.3048 #transform to metric system
df$dbh <- (trees$Girth * 0.3048) / pi #transform tree girth to diameter
First, the example of an equation that seems to work well:
form1 <- h ~ I(dbh ^ -1) + I( dbh ^ 2)
m1 <- lm(form1, data = df)
m1
Call:
lm(formula = form1, data = df)
Coefficients:
(Intercept) I(dbh^-1) I(dbh^2)
27.1147 -5.0553 0.1124
Coefficients a
, b
and c
are estimated, which is what we are interested in.
Now the problematic equation:
Trying to fit it like this:
form2 <- h ~ I(dbh ^ 2) / dbh + I(dbh ^ 2) + 1.3
gives an error:
m1 <- lm(form2, data = df)
Error in terms.formula(formula, data = data)
invalid model formula in ExtractVars
I guess this is because /
is interpreted as a nested model and not an arithmetic operator?
This doesn't give an error:
form2 <- h ~ I(I(dbh ^ 2) / dbh + I(dbh ^ 2) + 1.3)
m1 <- lm(form2, data = df)
But the result is not the one we want:
m1
Call:
lm(formula = form2, data = df)
Coefficients:
(Intercept) I(I(dbh^2)/dbh + I(dbh^2) + 1.3)
19.3883 0.8727
Only one coefficient is given for the whole term within the outer I()
, which seems to be logic.
How can we fit the second equation to our data?
See Question&Answers more detail:
os